A spectral-temporal constrained deep learning method for tree species mapping of plantation forests using time series Sentinel-2 imagery

计算机科学 树(集合论) 遥感 特征提取 人工智能 时态数据库 模式识别(心理学) 时间序列 特征(语言学) 适应性 数据挖掘 机器学习 地理 生态学 数学 数学分析 生物 语言学 哲学
作者
Zehua Huang,Liheng Zhong,Feng Zhao,Jin Wu,Hao Tang,Zhengang Lv,Binyuan Xu,Longfei Zhou,Rui Sun,Ran Meng
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:204: 397-420 被引量:32
标识
DOI:10.1016/j.isprsjprs.2023.09.009
摘要

Plantation forests provide critical ecosystem services and have experienced worldwide expansion during the past few decades. Accurate mapping of tree species through remote sensing is critical for managing plantation forests. The typical temporal behaviors and traits of tree species in satellite image time series (SITS) generate temporal and spectral features in multiple phenological stages that are critical to improve tree species mapping. However, the diverse input features, sequential relations and complex structures in SITS drastically increase the dimension and difficulty of spectral-temporal feature extraction, which challenges the capacity of many general classifiers not explicitly adapted for spectral-temporal learning. As a result, there is still a lack of a method that could automatically extract spectral-temporal features with high separability and regional adaptability from high-dimensional SITS for tree species mapping of plantation forests. Moreover, the effects of varying temporal resolution and feature combination on the plantation tree species mapping are under-explored. Here, we developed a multi-head attention-based method for automatically extracting spectral-temporal features with high separability based on a modified Transformer network (Transformer4SITS) for improved plantation tree species mapping. The end-to-end network model consists of a feature extraction module to learn deep spectral-temporal features from SITS and a fusion module to combine multiple features for improving mapping accuracy. We applied this method to two representative plantation forests in southern and northern China for tree species mapping. The results show that: (1) Transformer4SITS method could self-adaptively extract typical spectral-temporal features of key phenological stages (e.g., greenness rising and falling) from SITS, and achieved significantly improved accuracies by at most 15% in comparison with all four baseline methods (i.e., long short-term memory, harmonic analysis, time-weighted dynamic time warping, linear discriminant analysis); (2) time series with higher temporal resolution tended to produce more accurate species maps consistently across two sites, with their overall accuracies (OA) respectively increasing from 91.05% and 84.33% (60-day) to 94.88% and 88.72% (5-day), but the effect of high temporal resolution respectively leveled off around 90-day and 50-day resolution across two sites; (3) the mapping results using all available bands and two-band spectral indices outperformed the results using a subset of them, but with only modest increase in the accuracy (i.e., OA increased from 93.63% and 86.01% to 94.88% and 88.72%. This study thus provides a state-of-the-art deep learning-based method for improved tree species mapping, which is critical for sustainable management and biodiversity monitoring of plantation forests across large scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单细胞完成签到,获得积分10
刚刚
beak111完成签到,获得积分10
刚刚
1秒前
石头饼完成签到,获得积分10
2秒前
无花果应助zta采纳,获得30
2秒前
2秒前
2秒前
cavi发布了新的文献求助10
2秒前
2秒前
orange9发布了新的文献求助10
4秒前
nifty完成签到,获得积分10
4秒前
4秒前
充电宝应助就爱从黑巧采纳,获得30
5秒前
步步发布了新的文献求助20
5秒前
Young应助毛毛采纳,获得10
5秒前
科研通AI6应助毛毛采纳,获得10
5秒前
6秒前
6秒前
Young应助Dprisk采纳,获得10
6秒前
Folium完成签到,获得积分10
6秒前
小二郎应助gao采纳,获得10
7秒前
Grinde发布了新的文献求助10
7秒前
俏皮晓曼发布了新的文献求助10
7秒前
隐形曼青应助姿姿采纳,获得10
7秒前
July发布了新的文献求助10
7秒前
nini应助球球的铲屎官采纳,获得20
8秒前
8秒前
归尘发布了新的文献求助10
8秒前
8秒前
9秒前
pretzel完成签到,获得积分10
9秒前
大个应助微笑翠桃采纳,获得10
9秒前
阔达远山完成签到,获得积分10
10秒前
li关注了科研通微信公众号
11秒前
lulu发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
旺旺完成签到,获得积分10
12秒前
科研通AI6应助啦啦王采纳,获得10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736