A spectral-temporal constrained deep learning method for tree species mapping of plantation forests using time series Sentinel-2 imagery

计算机科学 树(集合论) 遥感 特征提取 人工智能 时态数据库 模式识别(心理学) 时间序列 特征(语言学) 适应性 数据挖掘 机器学习 地理 生态学 数学 数学分析 生物 语言学 哲学
作者
Z. J. Huang,Liheng Zhong,Feng Zhao,Jin Wu,Hao Tang,Zhengang Lv,Bin Xu,Lei Zhou,Rui Sun,Ran Meng
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:204: 397-420 被引量:5
标识
DOI:10.1016/j.isprsjprs.2023.09.009
摘要

Plantation forests provide critical ecosystem services and have experienced worldwide expansion during the past few decades. Accurate mapping of tree species through remote sensing is critical for managing plantation forests. The typical temporal behaviors and traits of tree species in satellite image time series (SITS) generate temporal and spectral features in multiple phenological stages that are critical to improve tree species mapping. However, the diverse input features, sequential relations and complex structures in SITS drastically increase the dimension and difficulty of spectral-temporal feature extraction, which challenges the capacity of many general classifiers not explicitly adapted for spectral-temporal learning. As a result, there is still a lack of a method that could automatically extract spectral-temporal features with high separability and regional adaptability from high-dimensional SITS for tree species mapping of plantation forests. Moreover, the effects of varying temporal resolution and feature combination on the plantation tree species mapping are under-explored. Here, we developed a multi-head attention-based method for automatically extracting spectral-temporal features with high separability based on a modified Transformer network (Transformer4SITS) for improved plantation tree species mapping. The end-to-end network model consists of a feature extraction module to learn deep spectral-temporal features from SITS and a fusion module to combine multiple features for improving mapping accuracy. We applied this method to two representative plantation forests in southern and northern China for tree species mapping. The results show that: (1) Transformer4SITS method could self-adaptively extract typical spectral-temporal features of key phenological stages (e.g., greenness rising and falling) from SITS, and achieved significantly improved accuracies by at most 15% in comparison with all four baseline methods (i.e., long short-term memory, harmonic analysis, time-weighted dynamic time warping, linear discriminant analysis); (2) time series with higher temporal resolution tended to produce more accurate species maps consistently across two sites, with their overall accuracies (OA) respectively increasing from 91.05% and 84.33% (60-day) to 94.88% and 88.72% (5-day), but the effect of high temporal resolution respectively leveled off around 90-day and 50-day resolution across two sites; (3) the mapping results using all available bands and two-band spectral indices outperformed the results using a subset of them, but with only modest increase in the accuracy (i.e., OA increased from 93.63% and 86.01% to 94.88% and 88.72%. This study thus provides a state-of-the-art deep learning-based method for improved tree species mapping, which is critical for sustainable management and biodiversity monitoring of plantation forests across large scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬雪萍完成签到 ,获得积分10
刚刚
刚刚
刚刚
lalala发布了新的文献求助10
3秒前
3秒前
3秒前
思源应助乔心采纳,获得10
3秒前
liaodanling完成签到 ,获得积分10
3秒前
Owen应助JOY采纳,获得10
5秒前
5秒前
JamesPei应助lingling采纳,获得10
6秒前
vigor完成签到 ,获得积分10
8秒前
wangwangdui完成签到,获得积分10
9秒前
10秒前
阳阳阳完成签到 ,获得积分10
10秒前
岁月流年完成签到,获得积分10
11秒前
Youdge完成签到,获得积分10
11秒前
12秒前
JMao发布了新的文献求助10
15秒前
炙热美女发布了新的文献求助10
18秒前
elle发布了新的文献求助10
18秒前
HC完成签到 ,获得积分10
20秒前
嗒刻发布了新的文献求助10
20秒前
星辰完成签到,获得积分20
21秒前
21秒前
mbl2006完成签到 ,获得积分10
22秒前
Ava应助以恒之心采纳,获得10
22秒前
23秒前
25秒前
lingling发布了新的文献求助10
26秒前
26秒前
Iron_five完成签到 ,获得积分10
26秒前
Gentleman完成签到,获得积分10
27秒前
白华苍松发布了新的文献求助20
27秒前
27秒前
炙热美女完成签到,获得积分10
27秒前
852应助科研通管家采纳,获得10
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
wwz应助科研通管家采纳,获得10
28秒前
彭于晏应助科研通管家采纳,获得10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155733
求助须知:如何正确求助?哪些是违规求助? 2806988
关于积分的说明 7871273
捐赠科研通 2465265
什么是DOI,文献DOI怎么找? 1312193
科研通“疑难数据库(出版商)”最低求助积分说明 629928
版权声明 601892