A spectral-temporal constrained deep learning method for tree species mapping of plantation forests using time series Sentinel-2 imagery

计算机科学 树(集合论) 遥感 特征提取 人工智能 时态数据库 模式识别(心理学) 时间序列 特征(语言学) 适应性 数据挖掘 机器学习 地理 生态学 数学 数学分析 生物 语言学 哲学
作者
Z. J. Huang,Liheng Zhong,Feng Zhao,Jin Wu,Hao Tang,Zhengang Lv,Bin Xu,Lei Zhou,Rui Sun,Ran Meng
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:204: 397-420 被引量:5
标识
DOI:10.1016/j.isprsjprs.2023.09.009
摘要

Plantation forests provide critical ecosystem services and have experienced worldwide expansion during the past few decades. Accurate mapping of tree species through remote sensing is critical for managing plantation forests. The typical temporal behaviors and traits of tree species in satellite image time series (SITS) generate temporal and spectral features in multiple phenological stages that are critical to improve tree species mapping. However, the diverse input features, sequential relations and complex structures in SITS drastically increase the dimension and difficulty of spectral-temporal feature extraction, which challenges the capacity of many general classifiers not explicitly adapted for spectral-temporal learning. As a result, there is still a lack of a method that could automatically extract spectral-temporal features with high separability and regional adaptability from high-dimensional SITS for tree species mapping of plantation forests. Moreover, the effects of varying temporal resolution and feature combination on the plantation tree species mapping are under-explored. Here, we developed a multi-head attention-based method for automatically extracting spectral-temporal features with high separability based on a modified Transformer network (Transformer4SITS) for improved plantation tree species mapping. The end-to-end network model consists of a feature extraction module to learn deep spectral-temporal features from SITS and a fusion module to combine multiple features for improving mapping accuracy. We applied this method to two representative plantation forests in southern and northern China for tree species mapping. The results show that: (1) Transformer4SITS method could self-adaptively extract typical spectral-temporal features of key phenological stages (e.g., greenness rising and falling) from SITS, and achieved significantly improved accuracies by at most 15% in comparison with all four baseline methods (i.e., long short-term memory, harmonic analysis, time-weighted dynamic time warping, linear discriminant analysis); (2) time series with higher temporal resolution tended to produce more accurate species maps consistently across two sites, with their overall accuracies (OA) respectively increasing from 91.05% and 84.33% (60-day) to 94.88% and 88.72% (5-day), but the effect of high temporal resolution respectively leveled off around 90-day and 50-day resolution across two sites; (3) the mapping results using all available bands and two-band spectral indices outperformed the results using a subset of them, but with only modest increase in the accuracy (i.e., OA increased from 93.63% and 86.01% to 94.88% and 88.72%. This study thus provides a state-of-the-art deep learning-based method for improved tree species mapping, which is critical for sustainable management and biodiversity monitoring of plantation forests across large scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静天思发布了新的文献求助10
刚刚
demom完成签到 ,获得积分10
刚刚
GGbond完成签到,获得积分20
刚刚
1秒前
谦让烤鸡完成签到,获得积分20
1秒前
2秒前
YiWei发布了新的文献求助10
2秒前
勤劳滑板发布了新的文献求助10
2秒前
热爱工作的桃子完成签到,获得积分10
3秒前
Xx完成签到,获得积分10
3秒前
暮辞发布了新的文献求助10
3秒前
4秒前
uulli完成签到,获得积分10
4秒前
小胡发布了新的文献求助10
4秒前
4秒前
5秒前
mys完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
善学以致用应助Jc采纳,获得10
5秒前
FashionBoy应助妮妮采纳,获得10
5秒前
5秒前
6秒前
dara997完成签到,获得积分10
6秒前
6秒前
7秒前
WYT发布了新的文献求助10
7秒前
梅花鹿发布了新的文献求助10
8秒前
独特的秋发布了新的文献求助10
8秒前
英姑应助冯尔蓝采纳,获得10
8秒前
斯文败类应助chigga采纳,获得10
10秒前
夜雨声烦发布了新的文献求助10
10秒前
GGbond发布了新的文献求助10
11秒前
11秒前
123发布了新的文献求助10
11秒前
11秒前
小揭发布了新的文献求助10
11秒前
三金完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798