Machine learning-based design and monitoring of algae blooms: Recent trends and future perspectives – A short review

可解释性 标杆管理 水华 计算机科学 机器学习 均方误差 人工神经网络 支持向量机 环境科学 人工智能 数据挖掘 生态学 浮游植物 营养物 统计 生物 数学 业务 营销
作者
Abdul Gaffar Sheik,Arvind Kumar,Reeza Patnaik,Sheena Kumari,Faizal Bux
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:54 (7): 509-532 被引量:9
标识
DOI:10.1080/10643389.2023.2252313
摘要

AbstractMachine learning (ML) models are widely used methods for analyzing data from sensors and satellites to monitor climate change, predict natural disasters, and protect wildlife. However, the application of these technologies for monitoring and managing algal blooms in freshwater environments is relatively new and novel. The commonly used models in algal blooms (ABS) so far are artificial neural networks (ANN), random forests (RF), support vector machine (SVM), data-driven modeling, and long short-term memory (LSTM). In the past, researchers have mostly worked on predicting the effluent parameters, nutrients, microculture, area and weather conditions, meteorological factors, ground waters, energy optimization, and metallic substances in algal blooms using ML models. Most of the studies have employed performance metrics like root mean squared error, mean squared error, peak signal, precision, and determination coefficient as their primary model performance measures for accuracy analysis, and the usage of transfer, and activation function. While there have been some studies on this topic, several research gaps are still to be addressed. The most significant gaps are related to the limited application of ML in different algae bloom scenarios, the interpretability of ML models, and the lack of integration with existing monitoring systems. Keeping these in mind, this review article has been methodically arranged to present an overview of the past studies, their limitations, and the way forward toward the application of ML in the prediction of ABS, thus benefitting future researchers in this area. This review aims to summarize the data that are available, including some benchmarking values.HighlightsReal-time monitoring of dynamics using ML is essential for mitigating algal blooms.Various complexities hinder applications of current ML algorithms in ABS.Activation and transfer functions can be used for selection of ML to predict ABS.Integrated ML algorithms can drive feature engineering to predict and control ABS.Keywords: Activation-functionalgae bloomsmonitoringmachine learningperformance metrics and predictionHANDLING EDITORS: Hyunjung Kim and Scott Bradford Disclosure statementNo potential conflict of interest was reported by the authors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助碧蓝板栗采纳,获得20
2秒前
2秒前
2秒前
3秒前
3秒前
强doig发布了新的文献求助10
4秒前
美好二娘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
Hello应助热情的人杰采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
zh发布了新的文献求助10
8秒前
9秒前
不配.应助上杉绘梨衣采纳,获得20
9秒前
9秒前
9秒前
bkagyin应助郝靖儿采纳,获得10
10秒前
Xuanran发布了新的文献求助10
12秒前
苏蛋蛋i发布了新的文献求助10
12秒前
CodeCraft应助dm11采纳,获得10
12秒前
13秒前
14秒前
14秒前
tomorrow505应助小白采纳,获得10
16秒前
18秒前
lqlqhehehe发布了新的文献求助10
21秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
23秒前
cctv18应助科研通管家采纳,获得10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596