Gait Pattern Recognition Based on Plantar Pressure Signals and Acceleration Signals

加速度计 步态 加速度 人工智能 计算机科学 模式识别(心理学) 压力传感器 小波 步态分析 计算机视觉 工程类 物理医学与康复 医学 机械工程 物理 经典力学 操作系统
作者
Meiyan Zhang,Dan Liu,Qisong Wang,Boqi Zhao,Ou Bai,Jinwei Sun
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-15 被引量:12
标识
DOI:10.1109/tim.2022.3204088
摘要

Gait has been widely used in the fields of elderly care, posture correction, and identity recognition. By analyzing and processing the motion parameters and attitude data collected by the sensor, the current gait was determined. In order to pointedly prevent falling in daily life, we proposed a gait pattern classification method based on multisensor. Falling and the gait patterns (standing, sitting/rising, squatting/rising, walking, and running) that falling is likely to happen in daily life were distinguished. Besides, we integrated pressure signals with acceleration signals to compensate for the insufficient data provided by single sensor that cannot fully reflect the complex human motion and solved the problem that falling detection based on acceleration signals is prone to misclassify because certain postures are of similar acceleration changes with falling. For further data analysis, the collected gait data were then transmitted to upper machine for signal processing through the designed wireless network. Combined with the characteristics of gait patterns, we analyzed the corresponding pressure signals, acceleration signals, and resultant acceleration signals. Wavelet energy entropy features and wavelet packet energy features were subsequently extracted from the collected gait data. Finally, we input the randomly selected test data into the established extreme learning machine (ELM) and $K$ -nearest neighbor (KNN) model to test gait pattern recognition effects. The performance of ELM algorithm was better in terms of processing time and classification results, with the highest average identification accuracy, precision, and recall rate of 0.974, 0.937, and 0.936, respectively. Besides, precision–recall (PR) curve was optimal, with the largest area of 0.973. Our presented algorithm responded rapidly and prevented falling in daily lifetime, which can be applied to health monitoring systems to detect daily activities of the elderly promptly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin完成签到,获得积分10
2秒前
2秒前
可爱的函函应助东风采纳,获得10
2秒前
bb完成签到,获得积分10
2秒前
3秒前
xixi完成签到,获得积分10
3秒前
京羊完成签到 ,获得积分10
3秒前
芒果布丁发布了新的文献求助10
4秒前
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
小林发布了新的文献求助10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
路人甲完成签到,获得积分20
5秒前
5秒前
SYLH应助科研通管家采纳,获得30
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
DD应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
江城子应助科研通管家采纳,获得10
6秒前
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
wsh12113发布了新的文献求助10
8秒前
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978493
求助须知:如何正确求助?哪些是违规求助? 3522581
关于积分的说明 11213889
捐赠科研通 3260014
什么是DOI,文献DOI怎么找? 1799712
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 807002