Gait Pattern Recognition Based on Plantar Pressure Signals and Acceleration Signals

加速度计 步态 加速度 人工智能 计算机科学 模式识别(心理学) 压力传感器 小波 步态分析 计算机视觉 工程类 物理医学与康复 操作系统 物理 机械工程 经典力学 医学
作者
Meiyan Zhang,Dan Liu,Qisong Wang,Boqi Zhao,Ou Bai,Jinwei Sun
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-15 被引量:12
标识
DOI:10.1109/tim.2022.3204088
摘要

Gait has been widely used in the fields of elderly care, posture correction, and identity recognition. By analyzing and processing the motion parameters and attitude data collected by the sensor, the current gait was determined. In order to pointedly prevent falling in daily life, we proposed a gait pattern classification method based on multisensor. Falling and the gait patterns (standing, sitting/rising, squatting/rising, walking, and running) that falling is likely to happen in daily life were distinguished. Besides, we integrated pressure signals with acceleration signals to compensate for the insufficient data provided by single sensor that cannot fully reflect the complex human motion and solved the problem that falling detection based on acceleration signals is prone to misclassify because certain postures are of similar acceleration changes with falling. For further data analysis, the collected gait data were then transmitted to upper machine for signal processing through the designed wireless network. Combined with the characteristics of gait patterns, we analyzed the corresponding pressure signals, acceleration signals, and resultant acceleration signals. Wavelet energy entropy features and wavelet packet energy features were subsequently extracted from the collected gait data. Finally, we input the randomly selected test data into the established extreme learning machine (ELM) and $K$ -nearest neighbor (KNN) model to test gait pattern recognition effects. The performance of ELM algorithm was better in terms of processing time and classification results, with the highest average identification accuracy, precision, and recall rate of 0.974, 0.937, and 0.936, respectively. Besides, precision–recall (PR) curve was optimal, with the largest area of 0.973. Our presented algorithm responded rapidly and prevented falling in daily lifetime, which can be applied to health monitoring systems to detect daily activities of the elderly promptly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyhmybsy完成签到,获得积分10
刚刚
yiyi131发布了新的文献求助20
4秒前
7秒前
Guke完成签到,获得积分10
8秒前
Bethune完成签到 ,获得积分10
10秒前
你想不想变成一粒芝麻完成签到,获得积分10
10秒前
和谐为上发布了新的文献求助10
10秒前
12秒前
14秒前
研友_n2r2Kn完成签到,获得积分10
16秒前
16秒前
俞渝发布了新的文献求助30
17秒前
可爱的函函应助gdh采纳,获得10
18秒前
Ann发布了新的文献求助10
19秒前
20秒前
Minerva发布了新的文献求助10
20秒前
闪闪完成签到 ,获得积分10
21秒前
俞渝完成签到,获得积分20
27秒前
30秒前
30秒前
陈晨完成签到,获得积分10
32秒前
33秒前
小马甲应助wxyllxx采纳,获得10
33秒前
35秒前
麻薯头头发布了新的文献求助10
35秒前
36秒前
37秒前
Linyi发布了新的文献求助10
37秒前
mml发布了新的文献求助10
38秒前
琉璃苣应助LC采纳,获得10
41秒前
。。。完成签到,获得积分10
42秒前
42秒前
霖宸羽完成签到,获得积分10
45秒前
田様应助mml采纳,获得10
46秒前
奇奇吃面发布了新的文献求助10
46秒前
我是老大应助wxyllxx采纳,获得10
49秒前
七月不看海完成签到,获得积分10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
英姑应助科研通管家采纳,获得10
50秒前
52秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023