亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models

计算机科学 优势和劣势 分类学(生物学) 计算模型 集合(抽象数据类型) 人工智能 数据科学 机器学习 数据挖掘 生物 植物 认识论 哲学 程序设计语言
作者
Li Huang,Li Zhang,Xing Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:24
标识
DOI:10.1093/bib/bbac358
摘要

Since the problem proposed in late 2000s, microRNA-disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助忧郁科研鼠采纳,获得10
1秒前
善学以致用应助Ryu采纳,获得50
1秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
9秒前
19秒前
lijiawei发布了新的文献求助10
21秒前
Criminology34发布了新的文献求助50
23秒前
睡觉补充能量完成签到,获得积分10
23秒前
fengfenghao完成签到,获得积分10
29秒前
小凯完成签到 ,获得积分10
32秒前
jueshadi完成签到 ,获得积分10
32秒前
朵朵完成签到,获得积分10
34秒前
39秒前
43秒前
dong发布了新的文献求助10
44秒前
46秒前
46秒前
46秒前
aaaaal发布了新的文献求助10
48秒前
50秒前
annaanna完成签到 ,获得积分10
52秒前
Criminology34发布了新的文献求助50
54秒前
ccc完成签到 ,获得积分10
54秒前
56秒前
YY发布了新的文献求助10
56秒前
Gin发布了新的文献求助10
59秒前
aaaaal完成签到,获得积分10
59秒前
Becky完成签到 ,获得积分10
1分钟前
1分钟前
杨北风完成签到 ,获得积分20
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944655
求助须知:如何正确求助?哪些是违规求助? 4209521
关于积分的说明 13085355
捐赠科研通 3989302
什么是DOI,文献DOI怎么找? 2184055
邀请新用户注册赠送积分活动 1199418
关于科研通互助平台的介绍 1112457