Incremental Capacity Curve Health-Indicator Extraction Based on Gaussian Filter and Improved Relevance Vector Machine for Lithium–Ion Battery Remaining Useful Life Estimation

相关向量机 噪音(视频) 支持向量机 预言 计算机科学 电池(电) 人工智能 统计 算法 机器学习 数学 数据挖掘 功率(物理) 物理 量子力学 图像(数学)
作者
Yongcun Fan,Jingsong Qiu,Shunli Wang,Xiao Guang Yang,Donglei Liu,Carlos Fernandez
出处
期刊:Metals [MDPI AG]
卷期号:12 (8): 1331-1331 被引量:4
标识
DOI:10.3390/met12081331
摘要

Accurate prediction of the remaining useful life (RUL) of lithium–ion batteries is the focus of lithium–ion battery health management. To achieve high–precision RUL estimation of lithium–ion batteries, a novel RUL prediction model is proposed by combining the extraction of health indicators based on incremental capacity curve (IC) and the method of improved adaptive relevance vector machine (RVM). First, the IC curve is extracted based on the charging current and voltage data. To attenuate the noise effects on the IC curve, Gaussian filtering is used and the optimal filtering window is determined to remove the noise interference. Based on this, the peak characteristics of the IC curve are analyzed and four groups of health indicators are extracted, and the strong correlation between health indicators and capacity degradation is determined using Pearson correlation analysis. Then, to optimize the traditional fixed kernel parameter RVM model, an RVM regression model whose kernel parameters are optimized by the Bayesian algorithm is established. Finally, four sets of datasets under CS2 battery in the public dataset of the University of Maryland are carried out for experimental validation. The validation results show that the improved RVM model has better short–term prediction performance and long–term prediction stability, the RUL prediction error is less than 20 cycles, and the mean absolute error is less than 0.02. The performance of the improved RVM model is better than that of the traditional RVM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
AK完成签到,获得积分10
3秒前
杨yyyy完成签到,获得积分10
3秒前
3秒前
欣喜眼神完成签到,获得积分10
3秒前
LAZYj完成签到,获得积分10
4秒前
blue2021发布了新的文献求助30
4秒前
4秒前
6秒前
欣喜眼神发布了新的文献求助10
6秒前
6秒前
HollyChung完成签到,获得积分10
6秒前
nhscyhy发布了新的文献求助10
7秒前
李成哲完成签到,获得积分10
7秒前
慕青应助qq123采纳,获得10
7秒前
8秒前
苹果以云完成签到,获得积分10
8秒前
小羊羊发布了新的文献求助10
8秒前
白凉鞋发布了新的文献求助10
8秒前
wanci发布了新的文献求助10
8秒前
9秒前
嗯呐完成签到,获得积分10
9秒前
rosalieshi应助自然棒棒糖采纳,获得30
9秒前
柳暗花明完成签到,获得积分10
9秒前
zxj完成签到,获得积分10
10秒前
雾里看花水中望月完成签到,获得积分10
10秒前
SciGPT应助静香采纳,获得10
10秒前
充电宝应助医小邦采纳,获得10
11秒前
123发布了新的文献求助10
11秒前
11秒前
打打应助gzl采纳,获得10
12秒前
万能图书馆应助Haoyun采纳,获得10
12秒前
捷克发布了新的文献求助10
13秒前
完美雁兰发布了新的文献求助10
13秒前
Ganlou应助司空豁采纳,获得10
14秒前
14秒前
险胜应助nhscyhy采纳,获得10
14秒前
babyJ完成签到,获得积分10
14秒前
yufanhui应助bai采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308038
求助须知:如何正确求助?哪些是违规求助? 2941584
关于积分的说明 8504244
捐赠科研通 2616093
什么是DOI,文献DOI怎么找? 1429449
科研通“疑难数据库(出版商)”最低求助积分说明 663767
邀请新用户注册赠送积分活动 648712