A micropillar compression investigation into the plastic flow properties of additively manufactured alloys

材料科学 位错 加工硬化 奥氏体不锈钢 复合材料 极限抗拉强度 硬化(计算) 可塑性 变形(气象学) 因科镍合金 冶金 微观结构 合金 腐蚀 图层(电子)
作者
Shihao Li,Yakai Zhao,Jayaraj Radhakrishnan,Upadrasta Ramamurty
出处
期刊:Acta Materialia [Elsevier]
卷期号:240: 118290-118290 被引量:21
标识
DOI:10.1016/j.actamat.2022.118290
摘要

Solidification cells and a high density of dislocations are two common features of additively manufactured (AM) alloys that are processed using techniques such as laser powder bed fusion (L-PBF) and directed energy deposition (DED). A critical assessment of their role in determining the plastic properties (yield strength, σy, and work hardening behavior) was performed via the micropillar compression tests on the austenitic 316L stainless steel (316L) and the Inconel 718 (IN718) alloys manufactured using the L-PBF and DED techniques, and comparing the results obtained with those of the compression and tensile tests on bulk samples. While both the L-PBF alloys contain submicron-scale cells whose boundaries are decorated with the dislocation networks, the DED 316L consists of micron-scale cells (whose boundaries are enriched with elemental segregation) with a uniform distribution of dislocations within them. The variations in σywith the pillar size are similar to those reported on pillars fabricated from pre-strained Ni but are opposite to those reported on pillars of micro/nano-crystalline alloys. The mechanical responses of the DED 316L pillars with and without cell boundaries (CBs) are similar. These observations suggest that the high density of dislocations (arranged in the network fashion or distributed uniformly) —and not the CBs—determine σy of the AM alloys. The stress-strain responses of pillars and transmission electron micrographs obtained on the deformed bulk samples suggest that the dislocation networks significantly enhance dislocation storage, leading to bulk-like deformation behaviors and superior work hardening capability in the L-PBF pillars with larger diameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Fortune发布了新的文献求助10
1秒前
1秒前
2秒前
sasa发布了新的文献求助10
2秒前
Lexi发布了新的文献求助10
2秒前
积极的凝云完成签到,获得积分10
2秒前
半夏发布了新的文献求助10
2秒前
月星发布了新的文献求助10
3秒前
睿力发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
伶俐的夜梦完成签到,获得积分10
3秒前
Tracy完成签到,获得积分10
4秒前
随便关注了科研通微信公众号
4秒前
TIAMO完成签到,获得积分10
5秒前
5秒前
Nes完成签到,获得积分20
5秒前
6秒前
6秒前
CherylZhao发布了新的文献求助10
7秒前
爆米花应助wen采纳,获得10
7秒前
7秒前
sasa完成签到,获得积分10
8秒前
Orange应助眼里还有光采纳,获得10
9秒前
小蘑菇应助伶俐的夜梦采纳,获得30
9秒前
weiyi完成签到,获得积分20
9秒前
ff发布了新的文献求助10
10秒前
Fortune完成签到,获得积分10
10秒前
邹秋雨发布了新的文献求助10
10秒前
123lx完成签到 ,获得积分10
10秒前
11秒前
轻松完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
一一应助小蓝采纳,获得10
13秒前
14秒前
开心秋天完成签到 ,获得积分10
14秒前
jjgod发布了新的文献求助10
14秒前
CherylZhao完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802