Improving mortality prediction in Acute Pancreatitis by machine learning and data augmentation

增采样 计算机科学 机器学习 人工智能 缺少数据 插补(统计学) 试验数据 数据挖掘 图像(数学) 程序设计语言
作者
M Asad Bin Hameed,Zareen Alamgir
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 106077-106077 被引量:18
标识
DOI:10.1016/j.compbiomed.2022.106077
摘要

Acute Pancreatitis (AP) is the inflammation of the pancreas that can be fatal or lead to further complications based on the severity of the attack. Early detection of AP disease can help save lives by providing utmost care, rigorous treatment, and better resources. In this era of data and technology, instead of relying on manual scoring systems, scientists are employing advanced machine learning and data mining models for the early detection of patients with high chances of mortality. The current work on AP mortality prediction is negligible, and the few studies that exist have many shortcomings and are impractical for clinical deployment. In this research work, we tried to overcome the existing issues. One main issue is the lack of high-quality public datasets for AP, which are crucial for effectively training ML models. The available datasets are small in size, have many missing values, and suffer from high class imbalance. We augmented three public datasets, MIMIC-III, MIMIC-IV, and eICU, to obtain a larger dataset, and experiments proved that augmented data trained classifiers better than original small datasets. Moreover, we employed emerging advanced techniques to handle underlying issues in data. The results showed that iterative imputer is best for filling missing values in AP data. It beats not only the basic techniques but also the Knn-based imputation. Class imbalance is first addressed using data downsampling; apparently, it gave decent results on small test sets. However, we conducted numerous experiments on large test sets to prove that downsampling in the case of AP produced misleading and poor results. Next, we applied various techniques to upsample data in two different class splits, a 50 to 50 and a 70 to 30 majority-minority class split. Four different tabular generative adversarial networks, CTGAN, TGAN, CopulaGAN, and CTAB, and a variational autoencoder, TVAE, were deployed for synthetic data generation. SMOTE was also utilized for data upsampling. The computational results showed that the Random Forest (RF) classifier outperformed all other classifiers on a 50 to 50 class split data generated by CTGAN, with 0.702 Fβ and 0.833 recall. Results produced by RF on the TVAE dataset were also comparable, with 0.698 Fβ. In the case of SMOTE-based upsampling, DNN performed best with a 0.671 Fβ score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
奇异果发布了新的文献求助10
刚刚
刚刚
李建勋完成签到,获得积分10
1秒前
1秒前
科研通AI5应助阿甲采纳,获得10
1秒前
李健应助钟鸿盛Domi采纳,获得10
1秒前
1秒前
平淡的鸿煊完成签到,获得积分10
2秒前
3秒前
无舟发布了新的文献求助10
5秒前
5秒前
杨哈哈完成签到 ,获得积分10
5秒前
万物更始完成签到,获得积分10
6秒前
LYD关闭了LYD文献求助
6秒前
6秒前
Fishball完成签到,获得积分10
6秒前
xiaokezhang完成签到,获得积分10
7秒前
咔酱发布了新的文献求助10
7秒前
roshan发布了新的文献求助10
7秒前
shimfey完成签到 ,获得积分10
8秒前
研友_Y59785应助浅尝离白采纳,获得10
8秒前
研友_Y59785应助浅尝离白采纳,获得10
8秒前
研友_Y59785应助浅尝离白采纳,获得10
9秒前
研友_Y59785应助浅尝离白采纳,获得10
9秒前
研友_Y59785应助浅尝离白采纳,获得10
9秒前
研友_Y59785应助浅尝离白采纳,获得10
9秒前
研友_Y59785应助浅尝离白采纳,获得10
9秒前
研友_Y59785应助浅尝离白采纳,获得10
9秒前
研友_Y59785应助浅尝离白采纳,获得10
9秒前
9秒前
xiao完成签到 ,获得积分10
10秒前
waouou发布了新的文献求助10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
12秒前
wangs应助科研通管家采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425