已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving mortality prediction in Acute Pancreatitis by machine learning and data augmentation

增采样 计算机科学 机器学习 人工智能 缺少数据 插补(统计学) 试验数据 数据挖掘 图像(数学) 程序设计语言
作者
M Asad Bin Hameed,Zareen Alamgir
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106077-106077 被引量:18
标识
DOI:10.1016/j.compbiomed.2022.106077
摘要

Acute Pancreatitis (AP) is the inflammation of the pancreas that can be fatal or lead to further complications based on the severity of the attack. Early detection of AP disease can help save lives by providing utmost care, rigorous treatment, and better resources. In this era of data and technology, instead of relying on manual scoring systems, scientists are employing advanced machine learning and data mining models for the early detection of patients with high chances of mortality. The current work on AP mortality prediction is negligible, and the few studies that exist have many shortcomings and are impractical for clinical deployment. In this research work, we tried to overcome the existing issues. One main issue is the lack of high-quality public datasets for AP, which are crucial for effectively training ML models. The available datasets are small in size, have many missing values, and suffer from high class imbalance. We augmented three public datasets, MIMIC-III, MIMIC-IV, and eICU, to obtain a larger dataset, and experiments proved that augmented data trained classifiers better than original small datasets. Moreover, we employed emerging advanced techniques to handle underlying issues in data. The results showed that iterative imputer is best for filling missing values in AP data. It beats not only the basic techniques but also the Knn-based imputation. Class imbalance is first addressed using data downsampling; apparently, it gave decent results on small test sets. However, we conducted numerous experiments on large test sets to prove that downsampling in the case of AP produced misleading and poor results. Next, we applied various techniques to upsample data in two different class splits, a 50 to 50 and a 70 to 30 majority-minority class split. Four different tabular generative adversarial networks, CTGAN, TGAN, CopulaGAN, and CTAB, and a variational autoencoder, TVAE, were deployed for synthetic data generation. SMOTE was also utilized for data upsampling. The computational results showed that the Random Forest (RF) classifier outperformed all other classifiers on a 50 to 50 class split data generated by CTGAN, with 0.702 Fβ and 0.833 recall. Results produced by RF on the TVAE dataset were also comparable, with 0.698 Fβ. In the case of SMOTE-based upsampling, DNN performed best with a 0.671 Fβ score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LDY完成签到,获得积分20
2秒前
3秒前
dj发布了新的文献求助10
4秒前
YUU发布了新的文献求助10
5秒前
6秒前
RMQ2025完成签到,获得积分10
7秒前
you完成签到 ,获得积分10
8秒前
8秒前
FashionBoy应助棠梨煎雪采纳,获得10
8秒前
初七123完成签到 ,获得积分10
9秒前
123完成签到,获得积分20
10秒前
Lucie发布了新的文献求助10
10秒前
13秒前
科研通AI2S应助Tracy采纳,获得10
14秒前
15秒前
thirteen完成签到 ,获得积分10
15秒前
17秒前
地尔硫卓发布了新的文献求助60
18秒前
大晟归来发布了新的文献求助20
19秒前
LDY发布了新的文献求助10
20秒前
kk完成签到,获得积分10
25秒前
沉静妙之完成签到 ,获得积分10
25秒前
25秒前
LI发布了新的文献求助10
26秒前
27秒前
29秒前
29秒前
32秒前
万能图书馆应助xfy采纳,获得10
33秒前
Lucie完成签到,获得积分20
34秒前
长情的小兔子关注了科研通微信公众号
36秒前
研友_LXjjOZ发布了新的文献求助10
36秒前
在水一方应助小杰采纳,获得10
39秒前
英俊的铭应助WENS采纳,获得10
42秒前
43秒前
43秒前
包李完成签到,获得积分10
44秒前
Jasper应助努力发文章采纳,获得10
45秒前
大晟归来完成签到,获得积分20
46秒前
等等小ur发布了新的文献求助10
49秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142320
求助须知:如何正确求助?哪些是违规求助? 2793260
关于积分的说明 7806108
捐赠科研通 2449516
什么是DOI,文献DOI怎么找? 1303345
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300