清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improving mortality prediction in Acute Pancreatitis by machine learning and data augmentation

计算机科学 机器学习 急性胰腺炎 人工智能 胰腺炎 医学 重症监护医学 内科学
作者
M Asad Bin Hameed,Zareen Alamgir
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106077-106077 被引量:34
标识
DOI:10.1016/j.compbiomed.2022.106077
摘要

Acute Pancreatitis (AP) is the inflammation of the pancreas that can be fatal or lead to further complications based on the severity of the attack. Early detection of AP disease can help save lives by providing utmost care, rigorous treatment, and better resources. In this era of data and technology, instead of relying on manual scoring systems, scientists are employing advanced machine learning and data mining models for the early detection of patients with high chances of mortality. The current work on AP mortality prediction is negligible, and the few studies that exist have many shortcomings and are impractical for clinical deployment. In this research work, we tried to overcome the existing issues. One main issue is the lack of high-quality public datasets for AP, which are crucial for effectively training ML models. The available datasets are small in size, have many missing values, and suffer from high class imbalance. We augmented three public datasets, MIMIC-III, MIMIC-IV, and eICU, to obtain a larger dataset, and experiments proved that augmented data trained classifiers better than original small datasets. Moreover, we employed emerging advanced techniques to handle underlying issues in data. The results showed that iterative imputer is best for filling missing values in AP data. It beats not only the basic techniques but also the Knn-based imputation. Class imbalance is first addressed using data downsampling; apparently, it gave decent results on small test sets. However, we conducted numerous experiments on large test sets to prove that downsampling in the case of AP produced misleading and poor results. Next, we applied various techniques to upsample data in two different class splits, a 50 to 50 and a 70 to 30 majority-minority class split. Four different tabular generative adversarial networks, CTGAN, TGAN, CopulaGAN, and CTAB, and a variational autoencoder, TVAE, were deployed for synthetic data generation. SMOTE was also utilized for data upsampling. The computational results showed that the Random Forest (RF) classifier outperformed all other classifiers on a 50 to 50 class split data generated by CTGAN, with 0.702 Fβ and 0.833 recall. Results produced by RF on the TVAE dataset were also comparable, with 0.698 Fβ. In the case of SMOTE-based upsampling, DNN performed best with a 0.671 Fβ score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助niko采纳,获得10
刚刚
领导范儿应助niko采纳,获得10
刚刚
乐乐应助niko采纳,获得10
刚刚
星辰大海应助niko采纳,获得10
刚刚
搜集达人应助niko采纳,获得50
刚刚
隐形曼青应助niko采纳,获得10
刚刚
李健应助niko采纳,获得10
刚刚
Akim应助niko采纳,获得10
刚刚
SciGPT应助niko采纳,获得10
刚刚
脑洞疼应助niko采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
消炎药完成签到,获得积分10
7秒前
常有李完成签到,获得积分10
39秒前
两个榴莲完成签到,获得积分0
43秒前
bastien完成签到 ,获得积分10
58秒前
1分钟前
Jenny完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Jenny完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534355
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582572
捐赠科研通 4562591
什么是DOI,文献DOI怎么找? 2500254
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450981