已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prospective cohort study of psoriatic arthritis risk in patients with psoriasis in a real-world psoriasis registry

医学 银屑病性关节炎 银屑病 体质指数 接收机工作特性 内科学 前瞻性队列研究 逻辑回归 共病 队列 流行病学 皮肤病科
作者
Alexis Ogdie,Ryan W. Harrison,Robert R. McLean,Tin-Chi Lin,Mark Lebwohl,Bruce Strober,Joe Zhuo,Vardhaman Patel,Philip J. Mease
出处
期刊:Journal of The American Academy of Dermatology [Elsevier]
卷期号:87 (6): 1303-1311 被引量:16
标识
DOI:10.1016/j.jaad.2022.07.060
摘要

BackgroundThe characteristics that predict the onset of psoriatic arthritis (PsA) among patients with psoriasis (PsO) may inform diagnosis and treatment.ObjectiveTo develop a model to predict the 2-year risk of developing PsA among patients with PsO.MethodsThis was a prospective cohort study of patients in the CorEvitas Psoriasis Registry without PsA at enrollment and with 24-month follow-up. Unregularized and regularized logistic regression models were developed and tested using descriptive variables to predict dermatologist-identified PsA at 24 months. Model performance was compared using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity.ResultsA total of 1489 patients were included. Nine unique predictive models were developed and tested. The optimal model, including Psoriasis Epidemiology Screening Tool (PEST), body mass index (BMI), modified Rheumatic Disease Comorbidity Index, work status, alcohol use, and patient-reported fatigue, predicted the onset of PsA within 24 months (AUC = 68.9%, sensitivity = 82.9%, specificity = 48.8%). A parsimonious model including PEST and BMI had similar performance (AUC = 68.8%; sensitivity = 92.7%, specificity = 36.5%).LimitationsPsA misclassification bias by dermatologists.ConclusionPEST and BMI were important factors in predicting the development of PsA in patients with PsO over 2 years and thereby foundational for future PsA risk model development. The characteristics that predict the onset of psoriatic arthritis (PsA) among patients with psoriasis (PsO) may inform diagnosis and treatment. To develop a model to predict the 2-year risk of developing PsA among patients with PsO. This was a prospective cohort study of patients in the CorEvitas Psoriasis Registry without PsA at enrollment and with 24-month follow-up. Unregularized and regularized logistic regression models were developed and tested using descriptive variables to predict dermatologist-identified PsA at 24 months. Model performance was compared using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. A total of 1489 patients were included. Nine unique predictive models were developed and tested. The optimal model, including Psoriasis Epidemiology Screening Tool (PEST), body mass index (BMI), modified Rheumatic Disease Comorbidity Index, work status, alcohol use, and patient-reported fatigue, predicted the onset of PsA within 24 months (AUC = 68.9%, sensitivity = 82.9%, specificity = 48.8%). A parsimonious model including PEST and BMI had similar performance (AUC = 68.8%; sensitivity = 92.7%, specificity = 36.5%). PsA misclassification bias by dermatologists. PEST and BMI were important factors in predicting the development of PsA in patients with PsO over 2 years and thereby foundational for future PsA risk model development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星星完成签到,获得积分10
刚刚
泥泞o发布了新的文献求助10
4秒前
领导范儿应助青阳采纳,获得10
4秒前
5160完成签到,获得积分10
6秒前
乐研客完成签到,获得积分10
7秒前
9秒前
星星2完成签到,获得积分10
9秒前
FleeToMars完成签到 ,获得积分10
10秒前
小洁完成签到 ,获得积分10
10秒前
bji完成签到,获得积分10
12秒前
yige完成签到,获得积分10
13秒前
吃草草没完成签到 ,获得积分10
13秒前
15秒前
李晓萌发布了新的文献求助10
15秒前
天宇南神完成签到 ,获得积分10
15秒前
顾矜应助xxhxx采纳,获得10
15秒前
量子星尘发布了新的文献求助10
17秒前
hjc完成签到,获得积分10
20秒前
sailingluwl完成签到,获得积分10
21秒前
23秒前
Rae完成签到 ,获得积分10
25秒前
luster完成签到 ,获得积分10
25秒前
moonlight完成签到,获得积分10
26秒前
天使她男人完成签到,获得积分10
28秒前
小迷糊完成签到 ,获得积分10
28秒前
993494543完成签到,获得积分10
29秒前
30秒前
31秒前
lhq完成签到 ,获得积分10
32秒前
33秒前
Suttier完成签到 ,获得积分10
34秒前
xxhxx发布了新的文献求助10
36秒前
Yesyes完成签到,获得积分10
37秒前
舒心的草莓完成签到 ,获得积分20
37秒前
zxcv1发布了新的文献求助10
38秒前
38秒前
健康的小鸽子完成签到 ,获得积分10
40秒前
爱撒娇的妙竹完成签到,获得积分10
42秒前
共享精神应助科研通管家采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573190
求助须知:如何正确求助?哪些是违规求助? 4659336
关于积分的说明 14724438
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524140
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704