Prospective cohort study of psoriatic arthritis risk in patients with psoriasis in a real-world psoriasis registry

医学 银屑病性关节炎 银屑病 体质指数 接收机工作特性 内科学 前瞻性队列研究 逻辑回归 共病 队列 流行病学 皮肤病科
作者
Alexis Ogdie,Ryan W. Harrison,Robert R. McLean,Tin-Chi Lin,Mark Lebwohl,Bruce Strober,Joe Zhuo,Vardhaman Patel,Philip J. Mease
出处
期刊:Journal of The American Academy of Dermatology [Elsevier]
卷期号:87 (6): 1303-1311 被引量:16
标识
DOI:10.1016/j.jaad.2022.07.060
摘要

BackgroundThe characteristics that predict the onset of psoriatic arthritis (PsA) among patients with psoriasis (PsO) may inform diagnosis and treatment.ObjectiveTo develop a model to predict the 2-year risk of developing PsA among patients with PsO.MethodsThis was a prospective cohort study of patients in the CorEvitas Psoriasis Registry without PsA at enrollment and with 24-month follow-up. Unregularized and regularized logistic regression models were developed and tested using descriptive variables to predict dermatologist-identified PsA at 24 months. Model performance was compared using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity.ResultsA total of 1489 patients were included. Nine unique predictive models were developed and tested. The optimal model, including Psoriasis Epidemiology Screening Tool (PEST), body mass index (BMI), modified Rheumatic Disease Comorbidity Index, work status, alcohol use, and patient-reported fatigue, predicted the onset of PsA within 24 months (AUC = 68.9%, sensitivity = 82.9%, specificity = 48.8%). A parsimonious model including PEST and BMI had similar performance (AUC = 68.8%; sensitivity = 92.7%, specificity = 36.5%).LimitationsPsA misclassification bias by dermatologists.ConclusionPEST and BMI were important factors in predicting the development of PsA in patients with PsO over 2 years and thereby foundational for future PsA risk model development. The characteristics that predict the onset of psoriatic arthritis (PsA) among patients with psoriasis (PsO) may inform diagnosis and treatment. To develop a model to predict the 2-year risk of developing PsA among patients with PsO. This was a prospective cohort study of patients in the CorEvitas Psoriasis Registry without PsA at enrollment and with 24-month follow-up. Unregularized and regularized logistic regression models were developed and tested using descriptive variables to predict dermatologist-identified PsA at 24 months. Model performance was compared using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. A total of 1489 patients were included. Nine unique predictive models were developed and tested. The optimal model, including Psoriasis Epidemiology Screening Tool (PEST), body mass index (BMI), modified Rheumatic Disease Comorbidity Index, work status, alcohol use, and patient-reported fatigue, predicted the onset of PsA within 24 months (AUC = 68.9%, sensitivity = 82.9%, specificity = 48.8%). A parsimonious model including PEST and BMI had similar performance (AUC = 68.8%; sensitivity = 92.7%, specificity = 36.5%). PsA misclassification bias by dermatologists. PEST and BMI were important factors in predicting the development of PsA in patients with PsO over 2 years and thereby foundational for future PsA risk model development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wings完成签到,获得积分10
1秒前
大模型应助yyyy采纳,获得10
1秒前
yin发布了新的文献求助10
2秒前
qiaomingixn发布了新的文献求助10
2秒前
卟卟高升发布了新的文献求助10
2秒前
3秒前
Orange应助哈哈镜阿姐采纳,获得10
3秒前
科研通AI2S应助柔弱的尔白采纳,获得10
4秒前
CodeCraft应助卢伟泽采纳,获得10
4秒前
6秒前
6秒前
7秒前
心静如水发布了新的文献求助10
7秒前
SciGPT应助Qiaoclin采纳,获得10
7秒前
阿黎完成签到,获得积分10
8秒前
xin完成签到 ,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
help3q发布了新的文献求助10
12秒前
裴道天发布了新的文献求助30
13秒前
可耐的白菜完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
ikutovaya完成签到,获得积分10
14秒前
爹地发布了新的文献求助10
15秒前
nyt完成签到,获得积分10
17秒前
yyyy发布了新的文献求助10
19秒前
20秒前
komorebi发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
想毕业关注了科研通微信公众号
22秒前
152894发布了新的文献求助30
22秒前
XXXXXX发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
木讷完成签到 ,获得积分10
25秒前
yurunxintian完成签到,获得积分10
25秒前
害怕的冷菱完成签到,获得积分10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465