Ionic surface propensity controls pH in nanopores

纳米孔 离子强度 水溶液 化学 化学物理 表面电荷 离子键合 离子 拉曼光谱 化学工程 无机化学 分析化学(期刊) 材料科学 纳米技术 物理化学 色谱法 有机化学 工程类 物理 光学
作者
Yaguang Zhu,Hamed Gholami Derami,Prashant Gupta,Rohit Gupta,Srikanth Singamaneni,Young-Shin Jun
出处
期刊:Chem [Elsevier]
卷期号:8 (11): 3081-3095 被引量:6
标识
DOI:10.1016/j.chempr.2022.07.021
摘要

•pH in nanopores is lower than pH in bulk solutions at high salinity •Surface propensities of anions and cations control their concentrations in nanopores •High concentration of bulk solutions causes electroneutrality breakdown in nanopores •High concentration of buffers cannot function in nanopores properly To predict many proton-involved reactions in natural and engineered systems, a better understanding of the difference between the solution pH in nanopores and the pH in the bulk solution is critical. However, how the pH in nanopores changes in response to changes in the bulk solution composition remains elusive. Here, the capability of surface-enhanced Raman scattering spectroscopy to measure both pH and ion concentrations enables us to discover a new mechanism: opposite ionic surface propensities induce differences in aqueous concentration and control the pH in nanopores. As further confirmed by our modified Poisson-Boltzmann model, in negatively charged nanopores, anion concentrations are still enhanced, whereas cation concentrations are suppressed. These effects can change the buffer’s conjugated acid and base ratio and attract protons to compensate for the excess negative charge in nanopores. Collectively, compared with the bulk solution pH, these factors cause an unexpectedly low pH in nanopores. To predict many proton-involved reactions in natural and engineered systems, a better understanding of the difference between the solution pH in nanopores and the pH in the bulk solution is critical. However, how the pH in nanopores changes in response to changes in the bulk solution composition remains elusive. Here, the capability of surface-enhanced Raman scattering spectroscopy to measure both pH and ion concentrations enables us to discover a new mechanism: opposite ionic surface propensities induce differences in aqueous concentration and control the pH in nanopores. As further confirmed by our modified Poisson-Boltzmann model, in negatively charged nanopores, anion concentrations are still enhanced, whereas cation concentrations are suppressed. These effects can change the buffer’s conjugated acid and base ratio and attract protons to compensate for the excess negative charge in nanopores. Collectively, compared with the bulk solution pH, these factors cause an unexpectedly low pH in nanopores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘冥应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
快乐小子发布了新的文献求助10
3秒前
maidang完成签到,获得积分20
3秒前
chao完成签到,获得积分10
4秒前
标致乐双完成签到 ,获得积分10
4秒前
4秒前
luermei完成签到,获得积分10
4秒前
why发布了新的文献求助10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
王小能完成签到,获得积分10
5秒前
kb发布了新的文献求助10
5秒前
文艺冷荷完成签到,获得积分10
5秒前
张先伟完成签到,获得积分10
6秒前
揽月发布了新的文献求助30
6秒前
aldehyde应助科研通管家采纳,获得10
8秒前
我爱学习发布了新的文献求助10
8秒前
熊大完成签到,获得积分10
9秒前
好久不见发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
showitt完成签到,获得积分10
12秒前
XXYY发布了新的文献求助10
12秒前
威武乐瑶完成签到,获得积分10
12秒前
song完成签到,获得积分10
12秒前
调研昵称发布了新的文献求助10
14秒前
鳗鱼飞绿发布了新的文献求助10
14秒前
14秒前
maoyingji发布了新的文献求助10
14秒前
又来注水了完成签到,获得积分10
15秒前
Fearless完成签到,获得积分20
15秒前
daydayup完成签到,获得积分10
17秒前
MEREDITH完成签到,获得积分10
17秒前
Young完成签到,获得积分10
18秒前
19秒前
19秒前
可靠之玉应助susui采纳,获得10
19秒前
孤独的匕发布了新的文献求助10
19秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2996249
求助须知:如何正确求助?哪些是违规求助? 2656625
关于积分的说明 7190066
捐赠科研通 2292204
什么是DOI,文献DOI怎么找? 1215049
科研通“疑难数据库(出版商)”最低求助积分说明 593031
版权声明 592795