Service Performance Prediction Based on Equivalent Circuit Model for Cosb3-Based Skutterudite Thermoelectric Device

斯库特绿铁矿 热电效应 等效电路 材料科学 服务(商务) 电气工程 热电材料 业务 工程类 物理 热力学 电压 营销
作者
Lei Wang,Qingfeng Song,Jincheng Liao,Chao Wang,Lidong Chen,Shengqiang Bai
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4199191
摘要

The performance degradation is one of the most critical issues for the practical applications of thermoelectric (TE) devices. The structure evolutions at both TE material’s surface and electrode interfaces, as the primary causes of performance deterioration, exhibit complex temperature dependence and affect the device output correlatively, which makes prediction of service performance very difficult. Here, we proposed an equivalent circuit model (ECM) to quantitatively clarify the correlation between the structure evolution and device parameters (heat flow, internal resistance, output power, etc.), in which the metamorphic layer (ML) and TE matrix are divided into finite elements and the equivalent circuit is constructed by connecting them in series (or parallel) along (or perpendicular to) the heat flow. The simulation results show that, the volumetric effect give great impact on the device performance mainly due to the changes of the electrical and thermal conductivities of ML and the electrode interfacial resistivity. In addition, it is found that the formation of ML shall cause internal currents which decreases open circuit voltage and therefore deteriorate the output power. Taking CoSb3-based TE module as example, at early stage of service the performance degradation is mainly caused by the interfacial structure evolution, while the influence of surface sublimation becomes dominant in long-term service. The ECM simulation results are well verified with the aging experiments on the Ce0.9Fe3CoSb12 and Yb0.3Co4Sb12 single-leg devices, demonstrating effectiveness of ECM for the service performance evaluation and life-prediction of TE devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周末不上发条完成签到,获得积分10
刚刚
金2022完成签到,获得积分10
1秒前
hrk完成签到,获得积分10
1秒前
1秒前
1351567822应助旦皋采纳,获得50
1秒前
2秒前
无极微光应助白英采纳,获得20
2秒前
2秒前
2秒前
嘭嘭嘭发布了新的文献求助20
3秒前
3秒前
彭于晏应助开心紫安采纳,获得10
3秒前
4秒前
4秒前
mmiww完成签到,获得积分10
4秒前
4秒前
宝可梦大师完成签到,获得积分10
5秒前
啦啦啦完成签到,获得积分10
5秒前
yoowt发布了新的文献求助10
5秒前
cnyyp发布了新的文献求助10
5秒前
小蘑菇应助山木采纳,获得10
5秒前
6秒前
7秒前
7秒前
XMY147305完成签到,获得积分10
8秒前
8秒前
安白发布了新的文献求助10
8秒前
梦二完成签到 ,获得积分10
8秒前
9秒前
9秒前
爱吃蜂蜜发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
Wonderland完成签到,获得积分10
11秒前
11秒前
余繁发布了新的文献求助10
11秒前
11秒前
失眠的汽车完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665315
求助须知:如何正确求助?哪些是违规求助? 4875879
关于积分的说明 15112944
捐赠科研通 4824400
什么是DOI,文献DOI怎么找? 2582734
邀请新用户注册赠送积分活动 1536689
关于科研通互助平台的介绍 1495315