Predicting quality parameters of wastewater treatment plants using artificial intelligence techniques

质量(理念) 污水处理 废水 环境科学 生化工程 人工智能 工程类 计算机科学 环境工程 认识论 哲学
作者
Ehsan Aghdam,Saeed Reza Mohandes,Patrick Manu,Clara Cheung,Akilu Yunusa‐Kaltungo,Tarek Zayed
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:405: 137019-137019 被引量:44
标识
DOI:10.1016/j.jclepro.2023.137019
摘要

Estimating wastewater treatment plants' (WWTPs) influent parameters such as 5-day biological oxygen demand (BOD5) and chemical oxygen demand (COD) is vital for optimizing electricity and energy consumption. Against this backdrop, the existing body of knowledge is bereft of a study employing Artificial Intelligence-based techniques for the prediction of BOD5 and COD. Thus, in this study, Gene expression programming (GEP), multilayer perception neural networks, multi-linear regression, k-nearest neighbors, gradient boosting, and regression trees -based models were trained for predicting BOD5 and COD, using monthly data collected from the inflow of 7 WWTPs over a three-year period in Hong Kong. Based on different statistical parameters, GEP provides more accurate estimations, with R2 values of 0.784 and 0.861 for BOD5 and COD respectively. Furthermore, results of sensitivity analysis undertaken by monte Carlo simulation revealed that both BOD5 and COD were mostly affected by concentrations of total suspended solids, and a 10% increase in the value of TSS resulted in a 7.94% and 7.92% increase in the values of BOD5 and COD, respectively. It is seen that the GEP modeling results complied with the fundamental chemistry of the wastewater quality parameters and can be further applied on other sewage sources such as industrial sewage and leachate. The promising results obtained pave the way for forecasting the operational parameters during sludge processing, leading to an extensive energy savings during the wastewater treatment processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冉亦完成签到,获得积分10
2秒前
星辰大海应助lllllria采纳,获得10
3秒前
杨杨杨完成签到,获得积分10
3秒前
自信又菡完成签到,获得积分10
3秒前
小白牛完成签到 ,获得积分10
7秒前
8秒前
tiger完成签到,获得积分10
8秒前
10秒前
zen关闭了zen文献求助
10秒前
11秒前
11秒前
橘络发布了新的文献求助10
14秒前
枇杷发布了新的文献求助10
15秒前
lizeyu发布了新的文献求助10
17秒前
17秒前
manforfull完成签到,获得积分10
18秒前
ding应助科研通管家采纳,获得30
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
19秒前
所所应助科研通管家采纳,获得10
20秒前
mei的科研小院子完成签到,获得积分10
20秒前
小马甲应助科研通管家采纳,获得30
20秒前
HCLonely应助科研通管家采纳,获得10
20秒前
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
20秒前
情怀应助科研通管家采纳,获得30
20秒前
怜熙完成签到 ,获得积分10
20秒前
HCLonely应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
慕青应助Lh采纳,获得10
21秒前
佳佳发布了新的文献求助10
23秒前
枇杷完成签到,获得积分10
23秒前
中恐完成签到,获得积分10
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313894
求助须知:如何正确求助?哪些是违规求助? 2946213
关于积分的说明 8528990
捐赠科研通 2621773
什么是DOI,文献DOI怎么找? 1434096
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650738