Privacy-Preserving Network Embedding Against Private Link Inference Attacks

嵌入 计算机科学 推论 网络拓扑 理论计算机科学 情报检索 算法 数据挖掘 人工智能 计算机网络
作者
Xiao Han,Yuncong Yang,Leye Wang,Junjie Wu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 847-859 被引量:4
标识
DOI:10.1109/tdsc.2023.3264110
摘要

Network embedding represents network nodes by a low-dimensional informative vector. While it is generally effective for various downstream tasks, it may leak some private information of networks, such as hidden private links. In this work, we address a novel problem of privacy-preserving network embedding against private link inference attacks . Basically, we propose to perturb the original network by adding or removing links, and expect the embedding generated on the perturbed network can leak little information about private links but hold high utility for various downstream tasks. Towards this goal, we first propose general measurements to quantify privacy gain and utility loss incurred by candidate network perturbations; we then design a P rivacy- P reserving N etwork E mbedding (i.e., PPNE) framework to identify the optimal perturbation solution with the best privacy-utility trade-off in an iterative way. Furthermore, we propose many techniques to accelerate PPNE and ensure its scalability. For instance, as the skip-gram embedding methods including DeepWalk and LINE can be seen as matrix factorization with closed-form embedding results, we devise efficient privacy gain and utility loss approximation methods to avoid the repetitive time-consuming embedding training for every candidate network perturbation in each iteration. Experiments on real-life network datasets (with up to millions of nodes) verify that PPNE outperforms baselines by sacrificing less utility and obtaining higher privacy protection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
申申完成签到,获得积分10
刚刚
1秒前
qian完成签到,获得积分20
1秒前
锦鲤完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
禾+发布了新的文献求助10
3秒前
小白完成签到,获得积分20
4秒前
刘JX完成签到,获得积分10
4秒前
geold发布了新的文献求助10
6秒前
传奇3应助Mm采纳,获得10
6秒前
bkagyin应助帕尼尼采纳,获得10
7秒前
研友_VZG7GZ应助圣斗士采纳,获得10
7秒前
D1fficulty完成签到,获得积分0
7秒前
欢欢完成签到,获得积分10
7秒前
7秒前
DDDD发布了新的文献求助10
7秒前
申申发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
8秒前
Cassie发布了新的文献求助30
9秒前
9秒前
QY发布了新的文献求助20
9秒前
务实老虎完成签到,获得积分10
10秒前
Orange应助刘JX采纳,获得10
12秒前
12秒前
小白菜完成签到,获得积分10
12秒前
时玖发布了新的文献求助10
14秒前
surui完成签到 ,获得积分10
14秒前
16秒前
jjzzSherri完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
领导范儿应助QY采纳,获得10
19秒前
19秒前
20秒前
Yikepp完成签到,获得积分10
21秒前
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342