Privacy-Preserving Network Embedding Against Private Link Inference Attacks

嵌入 计算机科学 推论 网络拓扑 理论计算机科学 情报检索 算法 数据挖掘 人工智能 计算机网络
作者
Xiao Han,Yuncong Yang,Leye Wang,Junjie Wu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 847-859 被引量:4
标识
DOI:10.1109/tdsc.2023.3264110
摘要

Network embedding represents network nodes by a low-dimensional informative vector. While it is generally effective for various downstream tasks, it may leak some private information of networks, such as hidden private links. In this work, we address a novel problem of privacy-preserving network embedding against private link inference attacks . Basically, we propose to perturb the original network by adding or removing links, and expect the embedding generated on the perturbed network can leak little information about private links but hold high utility for various downstream tasks. Towards this goal, we first propose general measurements to quantify privacy gain and utility loss incurred by candidate network perturbations; we then design a P rivacy- P reserving N etwork E mbedding (i.e., PPNE) framework to identify the optimal perturbation solution with the best privacy-utility trade-off in an iterative way. Furthermore, we propose many techniques to accelerate PPNE and ensure its scalability. For instance, as the skip-gram embedding methods including DeepWalk and LINE can be seen as matrix factorization with closed-form embedding results, we devise efficient privacy gain and utility loss approximation methods to avoid the repetitive time-consuming embedding training for every candidate network perturbation in each iteration. Experiments on real-life network datasets (with up to millions of nodes) verify that PPNE outperforms baselines by sacrificing less utility and obtaining higher privacy protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Spy_R发布了新的文献求助10
1秒前
1秒前
1秒前
luhui完成签到,获得积分10
2秒前
刘定发布了新的文献求助10
2秒前
BINGBING1230发布了新的文献求助50
2秒前
p1sto发布了新的文献求助10
2秒前
Orange应助苹果不弱采纳,获得10
3秒前
舒适以山完成签到,获得积分10
3秒前
唄肯妮完成签到,获得积分10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
犹豫灵凡发布了新的文献求助10
4秒前
hjy发布了新的文献求助20
5秒前
LMY完成签到 ,获得积分10
5秒前
dadsafyf发布了新的文献求助10
5秒前
胡梦祥完成签到,获得积分10
5秒前
科研通AI6应助下山的阿姜采纳,获得10
5秒前
吴彦祖发布了新的文献求助10
6秒前
6秒前
7秒前
FWCY发布了新的文献求助10
7秒前
8秒前
柚子发布了新的文献求助10
8秒前
8秒前
浮游应助zhengzheng采纳,获得10
9秒前
xj_yjl完成签到,获得积分10
11秒前
李健应助rrrrrrry采纳,获得20
12秒前
zhucan发布了新的文献求助10
12秒前
kmoonkkk发布了新的文献求助10
12秒前
Carly发布了新的文献求助10
12秒前
12秒前
吴彦祖完成签到,获得积分10
12秒前
奋斗寻绿关注了科研通微信公众号
13秒前
14秒前
慕青应助雅哈采纳,获得10
14秒前
Owen应助QIQI采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723