Privacy-Preserving Network Embedding Against Private Link Inference Attacks

嵌入 计算机科学 推论 网络拓扑 理论计算机科学 情报检索 算法 数据挖掘 人工智能 计算机网络
作者
Xiao Han,Yuncong Yang,Leye Wang,Leye Wang
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 847-859 被引量:3
标识
DOI:10.1109/tdsc.2023.3264110
摘要

Network embedding represents network nodes by a low-dimensional informative vector. While it is generally effective for various downstream tasks, it may leak some private information of networks, such as hidden private links. In this work, we address a novel problem of privacy-preserving network embedding against private link inference attacks . Basically, we propose to perturb the original network by adding or removing links, and expect the embedding generated on the perturbed network can leak little information about private links but hold high utility for various downstream tasks. Towards this goal, we first propose general measurements to quantify privacy gain and utility loss incurred by candidate network perturbations; we then design a P rivacy- P reserving N etwork E mbedding ( i.e. , PPNE) framework to identify the optimal perturbation solution with the best privacy-utility trade-off in an iterative way. Furthermore, we propose many techniques to accelerate PPNE and ensure its scalability. For instance, as the skip-gram embedding methods including DeepWalk and LINE can be seen as matrix factorization with closed-form embedding results, we devise efficient privacy gain and utility loss approximation methods to avoid the repetitive time-consuming embedding training for every candidate network perturbation in each iteration. Experiments on real-life network datasets (with up to millions of nodes) verify that PPNE outperforms baselines by sacrificing less utility and obtaining higher privacy protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wellnemo完成签到,获得积分10
刚刚
651完成签到 ,获得积分10
1秒前
zjx关闭了zjx文献求助
1秒前
难过的慕青完成签到,获得积分10
2秒前
p_kunnnn完成签到,获得积分10
2秒前
hhh发布了新的文献求助10
2秒前
shinysparrow应助jun采纳,获得200
2秒前
2秒前
学术菜鸡123完成签到,获得积分10
3秒前
硕硕274完成签到,获得积分10
3秒前
3秒前
CipherSage应助AAAAAAAAAAA采纳,获得10
4秒前
yihui1113关注了科研通微信公众号
4秒前
爆米花应助May采纳,获得10
6秒前
无聊的绮菱完成签到 ,获得积分10
6秒前
李哈发布了新的文献求助10
7秒前
7秒前
ye发布了新的文献求助20
7秒前
8秒前
斯文败类应助ljlcyx采纳,获得10
8秒前
充电宝应助悲凉的艳采纳,获得10
8秒前
8秒前
可靠的咖啡完成签到,获得积分10
9秒前
9秒前
cx发布了新的文献求助30
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
10秒前
juziyaya应助科研通管家采纳,获得10
10秒前
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
zedmaster完成签到,获得积分10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
12秒前
嘟嘟金子发布了新的文献求助100
12秒前
Destiny完成签到,获得积分20
12秒前
dudu发布了新的文献求助10
13秒前
ZZ完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655