亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Privacy-Preserving Network Embedding Against Private Link Inference Attacks

嵌入 计算机科学 推论 网络拓扑 理论计算机科学 情报检索 算法 数据挖掘 人工智能 计算机网络
作者
Xiao Han,Yuncong Yang,Leye Wang,Junjie Wu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 847-859 被引量:4
标识
DOI:10.1109/tdsc.2023.3264110
摘要

Network embedding represents network nodes by a low-dimensional informative vector. While it is generally effective for various downstream tasks, it may leak some private information of networks, such as hidden private links. In this work, we address a novel problem of privacy-preserving network embedding against private link inference attacks . Basically, we propose to perturb the original network by adding or removing links, and expect the embedding generated on the perturbed network can leak little information about private links but hold high utility for various downstream tasks. Towards this goal, we first propose general measurements to quantify privacy gain and utility loss incurred by candidate network perturbations; we then design a P rivacy- P reserving N etwork E mbedding (i.e., PPNE) framework to identify the optimal perturbation solution with the best privacy-utility trade-off in an iterative way. Furthermore, we propose many techniques to accelerate PPNE and ensure its scalability. For instance, as the skip-gram embedding methods including DeepWalk and LINE can be seen as matrix factorization with closed-form embedding results, we devise efficient privacy gain and utility loss approximation methods to avoid the repetitive time-consuming embedding training for every candidate network perturbation in each iteration. Experiments on real-life network datasets (with up to millions of nodes) verify that PPNE outperforms baselines by sacrificing less utility and obtaining higher privacy protection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星夜漫漫发布了新的文献求助10
2秒前
5秒前
14秒前
XDSH完成签到 ,获得积分10
18秒前
22秒前
24秒前
洁净的千凡完成签到 ,获得积分20
27秒前
蓝天下载发布了新的文献求助10
30秒前
哈哈哈哈哈哈完成签到,获得积分20
35秒前
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
动听衬衫完成签到 ,获得积分20
41秒前
48秒前
52秒前
52秒前
56秒前
guagua发布了新的文献求助10
57秒前
Akim应助guagua采纳,获得10
1分钟前
1分钟前
苏子墨完成签到,获得积分10
1分钟前
lanxinyue完成签到,获得积分0
1分钟前
尤奥毅发布了新的文献求助10
1分钟前
1分钟前
任jie发布了新的文献求助30
1分钟前
1分钟前
火火完成签到 ,获得积分10
1分钟前
oleskarabach完成签到,获得积分20
2分钟前
任jie完成签到,获得积分10
2分钟前
尤奥毅关注了科研通微信公众号
2分钟前
GZY发布了新的文献求助10
2分钟前
zhdhh发布了新的文献求助10
2分钟前
2分钟前
GZY完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639516
求助须知:如何正确求助?哪些是违规求助? 4748744
关于积分的说明 15006553
捐赠科研通 4797693
什么是DOI,文献DOI怎么找? 2563727
邀请新用户注册赠送积分活动 1522666
关于科研通互助平台的介绍 1482394