Reconstruction of long-term strain data for structural health monitoring with a hybrid deep-learning and autoregressive model considering thermal effects

结构健康监测 自回归模型 卷积神经网络 深度学习 计算机科学 组分(热力学) 非线性系统 桥(图论) 期限(时间) 人工智能 人工神经网络 模式识别(心理学) 工程类 结构工程 数学 统计 医学 物理 量子力学 内科学 热力学
作者
Chengbin Chen,Liqun Tang,Yonghui Lu,Yong Wang,Zejia Liu,Yiping Liu,Licheng Zhou,Zhenyu Jiang,Bao Yang
出处
期刊:Engineering Structures [Elsevier]
卷期号:285: 116063-116063 被引量:16
标识
DOI:10.1016/j.engstruct.2023.116063
摘要

Complete data are essential for implementing reliable structural health monitoring (SHM); however, data loss due to equipment malfunction or other potential factors is unavoidable. Therefore, it is necessary to develop reliable structural-response-reconstruction methods. However, previous strain reconstruction methods have three shortcomings that lead to relatively low accuracy: 1) they typically do not use modules with better ability to capture the long- and short-term variation patterns of time series, such as the bidirectional gated recurrent unit (BiGRU) and convolutional neural network (CNN); 2) they do not simultaneously consider the spatiotemporal correlation among sensors and the strong correlation between temperature and strain, each of which has been demonstrated to contribute to improving the reconstruction accuracy separately; and 3) they do not carefully consider the linear and nonlinear correlations among SHM data. To address these problems, we proposed a strain reconstruction method that combines a nonlinear deep-learning (DL) component with a linear autoregressive (AR) component. The method also utilizes BiGRU and CNN in the DL component to capture the long- and short-term patterns of the SHM data better, as well as the two above-mentioned data correlations. To fully validate the performance of the proposed method, the long-term SHM data of a long-span steel box girder suspension bridge were utilized for validation. The results show that the hybrid DL and AR model can reconstruct the long- and short-term missing data with higher accuracy under different scenarios than previous models, such as the CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫薯球完成签到,获得积分10
刚刚
龚佳豪发布了新的文献求助10
1秒前
1秒前
渔舟唱晚应助布岩壁采纳,获得10
2秒前
3秒前
HKK关注了科研通微信公众号
4秒前
无名老大应助haralee采纳,获得20
6秒前
holmes发布了新的文献求助10
7秒前
9秒前
hai完成签到,获得积分20
9秒前
大个应助Luhan采纳,获得10
10秒前
10秒前
11秒前
hai发布了新的文献求助10
14秒前
15秒前
渔舟唱晚应助龚佳豪采纳,获得10
16秒前
16秒前
17秒前
20秒前
干净傲霜发布了新的文献求助10
20秒前
忍蛙完成签到,获得积分10
22秒前
刚子完成签到 ,获得积分10
24秒前
俭朴的一曲完成签到,获得积分10
24秒前
李德胜完成签到,获得积分10
24秒前
不配.应助caicai采纳,获得10
25秒前
25秒前
26秒前
29秒前
牛哥完成签到 ,获得积分20
30秒前
欣欣发布了新的文献求助10
32秒前
Lorin完成签到 ,获得积分10
32秒前
小萝卜完成签到,获得积分10
33秒前
39秒前
糟糕的铁锤应助小鸭子采纳,获得10
40秒前
Akim应助灌灌灌灌v采纳,获得10
41秒前
积极的爆米花完成签到,获得积分10
43秒前
46秒前
49秒前
和谐曼凝完成签到 ,获得积分10
52秒前
萧水白应助张彩霞采纳,获得10
54秒前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371679
求助须知:如何正确求助?哪些是违规求助? 2989769
关于积分的说明 8737179
捐赠科研通 2673092
什么是DOI,文献DOI怎么找? 1464360
科研通“疑难数据库(出版商)”最低求助积分说明 677506
邀请新用户注册赠送积分活动 668824