Enhanced multihead self-attention block network for remote sensing image scene classification

计算机科学 人工智能 卷积神经网络 冗余(工程) 块(置换群论) 模式识别(心理学) 光学(聚焦) 突出 卷积(计算机科学) 计算机视觉 人工神经网络 物理 几何学 数学 光学 操作系统
作者
Yijin Li,Jiaxin Wang,Si-Bao Chen,Jin Tang,Bin Luo
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:17 (01)
标识
DOI:10.1117/1.jrs.17.016517
摘要

Remote sensing image scene classification has been widely researched with the aim of assigning semantics labels to the land cover. Although convolutional neural networks (CNN), such as VggNet and ResNet, have achieved good performance, the complex background and redundant information of remote sensing images restrict the improvement of final accuracy. We propose an enhanced multihead self-attention block network, which effectively reduces the adverse impact of background and emphasize the main information. In this model, due to the possible redundancy of high-level information of CNN, we only replace the final three bottleneck blocks of ResNet50 with the enhanced multihead self-attention layer to focus on the salient region of each image more effectively. Our enhanced multihead self-attention layer provides the following improvements over the classical module. First, we construct a triple-way convolution to deal with the arbitrary directionality of remote sensing images and get more stable attention information. Then, the improved relative position encodings are used to consider the relative distance between different location features. Finally, we use depthwise convolution and InstanceNorm operation to restore the diversity ability of multiheads. The contrast and ablation experiments carried out on three public datasets show our approach improves upon the baseline significantly and achieves remarkable performance compared with some state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Echo发布了新的文献求助10
1秒前
524974281完成签到,获得积分20
1秒前
1秒前
在水一方应助qianyuan采纳,获得30
2秒前
热心玉兰完成签到,获得积分10
2秒前
MiriamYu完成签到,获得积分10
3秒前
小小怪兽发布了新的文献求助10
3秒前
4秒前
岗岗发布了新的文献求助10
4秒前
4秒前
啊楠发布了新的文献求助10
5秒前
追寻十八发布了新的文献求助20
5秒前
热心玉兰发布了新的文献求助10
5秒前
6秒前
复杂冬易发布了新的文献求助10
6秒前
赘婿应助qinyuynip采纳,获得10
7秒前
7秒前
habitatyu完成签到,获得积分10
7秒前
子车茗应助幽默的凡采纳,获得30
9秒前
10秒前
嘉心糖应助rosy采纳,获得40
10秒前
小马甲应助爱坤坤采纳,获得10
10秒前
12秒前
12秒前
12秒前
14秒前
14秒前
524974281发布了新的文献求助200
14秒前
张强发布了新的文献求助10
16秒前
科研通AI2S应助热心玉兰采纳,获得10
16秒前
17秒前
酷波er应助儒雅晓霜采纳,获得10
19秒前
qianyuan发布了新的文献求助30
19秒前
22秒前
桐桐应助岗岗采纳,获得10
23秒前
23秒前
冬日山行发布了新的文献求助20
25秒前
张强完成签到,获得积分10
26秒前
z3Q应助sjdenghao采纳,获得10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306895
求助须知:如何正确求助?哪些是违规求助? 2940756
关于积分的说明 8498339
捐赠科研通 2614923
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648297