Enhanced multihead self-attention block network for remote sensing image scene classification

计算机科学 人工智能 卷积神经网络 冗余(工程) 块(置换群论) 模式识别(心理学) 光学(聚焦) 突出 卷积(计算机科学) 计算机视觉 人工神经网络 几何学 数学 操作系统 光学 物理
作者
Yijin Li,Jiaxin Wang,Si-Bao Chen,Jin Tang,Bin Luo
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:17 (01)
标识
DOI:10.1117/1.jrs.17.016517
摘要

Remote sensing image scene classification has been widely researched with the aim of assigning semantics labels to the land cover. Although convolutional neural networks (CNN), such as VggNet and ResNet, have achieved good performance, the complex background and redundant information of remote sensing images restrict the improvement of final accuracy. We propose an enhanced multihead self-attention block network, which effectively reduces the adverse impact of background and emphasize the main information. In this model, due to the possible redundancy of high-level information of CNN, we only replace the final three bottleneck blocks of ResNet50 with the enhanced multihead self-attention layer to focus on the salient region of each image more effectively. Our enhanced multihead self-attention layer provides the following improvements over the classical module. First, we construct a triple-way convolution to deal with the arbitrary directionality of remote sensing images and get more stable attention information. Then, the improved relative position encodings are used to consider the relative distance between different location features. Finally, we use depthwise convolution and InstanceNorm operation to restore the diversity ability of multiheads. The contrast and ablation experiments carried out on three public datasets show our approach improves upon the baseline significantly and achieves remarkable performance compared with some state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干饭闪电狼完成签到,获得积分10
刚刚
YUZU完成签到,获得积分10
1秒前
123完成签到,获得积分10
2秒前
pcx完成签到,获得积分10
2秒前
phd完成签到,获得积分10
3秒前
3秒前
曹志毅完成签到,获得积分10
3秒前
mito发布了新的文献求助10
4秒前
无悔呀发布了新的文献求助10
4秒前
5秒前
君君发布了新的文献求助10
5秒前
Yang完成签到,获得积分10
6秒前
风雨完成签到,获得积分10
6秒前
6秒前
7秒前
彭于晏应助小西采纳,获得30
7秒前
可爱的函函应助布布采纳,获得10
8秒前
9秒前
轩辕德地发布了新的文献求助10
9秒前
nine发布了新的文献求助30
9秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
10秒前
JamesPei应助小敦采纳,获得10
10秒前
今非发布了新的文献求助10
10秒前
李健的小迷弟应助通~采纳,获得30
10秒前
10秒前
10秒前
fanfan44390发布了新的文献求助10
10秒前
Zhang完成签到,获得积分10
11秒前
小二郎应助小田采纳,获得10
12秒前
12秒前
隐形曼青应助liike采纳,获得10
12秒前
phd发布了新的文献求助10
12秒前
12秒前
dingdong发布了新的文献求助30
12秒前
Orange应助清秀的语山采纳,获得50
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
13秒前
无花果应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794