Enhanced multihead self-attention block network for remote sensing image scene classification

计算机科学 人工智能 卷积神经网络 冗余(工程) 块(置换群论) 模式识别(心理学) 光学(聚焦) 突出 卷积(计算机科学) 计算机视觉 人工神经网络 物理 几何学 数学 光学 操作系统
作者
Yijin Li,Jiaxin Wang,Si-Bao Chen,Jin Tang,Bin Luo
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:17 (01)
标识
DOI:10.1117/1.jrs.17.016517
摘要

Remote sensing image scene classification has been widely researched with the aim of assigning semantics labels to the land cover. Although convolutional neural networks (CNN), such as VggNet and ResNet, have achieved good performance, the complex background and redundant information of remote sensing images restrict the improvement of final accuracy. We propose an enhanced multihead self-attention block network, which effectively reduces the adverse impact of background and emphasize the main information. In this model, due to the possible redundancy of high-level information of CNN, we only replace the final three bottleneck blocks of ResNet50 with the enhanced multihead self-attention layer to focus on the salient region of each image more effectively. Our enhanced multihead self-attention layer provides the following improvements over the classical module. First, we construct a triple-way convolution to deal with the arbitrary directionality of remote sensing images and get more stable attention information. Then, the improved relative position encodings are used to consider the relative distance between different location features. Finally, we use depthwise convolution and InstanceNorm operation to restore the diversity ability of multiheads. The contrast and ablation experiments carried out on three public datasets show our approach improves upon the baseline significantly and achieves remarkable performance compared with some state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黄医生发布了新的文献求助10
2秒前
brwen完成签到,获得积分10
2秒前
4秒前
4秒前
赘婿应助zjkzh采纳,获得10
4秒前
6秒前
小M完成签到,获得积分10
7秒前
无私的芹应助ernest采纳,获得10
7秒前
ning22宁完成签到 ,获得积分10
8秒前
18922406869发布了新的文献求助30
8秒前
9秒前
李爱国应助慵懒的树采纳,获得10
10秒前
谢某某102097完成签到,获得积分10
10秒前
hhh发布了新的文献求助10
11秒前
kui水买完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
蛋鹅完成签到,获得积分10
13秒前
14秒前
14秒前
彭于晏应助15136780701采纳,获得10
15秒前
Kaka发布了新的文献求助10
16秒前
gfhdf完成签到,获得积分10
16秒前
所所应助GQ采纳,获得10
17秒前
肖小张完成签到,获得积分20
17秒前
蛋鹅发布了新的文献求助10
18秒前
新城吴发布了新的文献求助10
18秒前
zjkzh发布了新的文献求助10
19秒前
19秒前
完美世界应助hhh采纳,获得10
21秒前
Orange应助mm采纳,获得10
21秒前
糯米团的完成签到 ,获得积分10
21秒前
bkagyin应助张豪杰采纳,获得10
22秒前
22秒前
科目三应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952693
求助须知:如何正确求助?哪些是违规求助? 3498194
关于积分的说明 11090590
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801350