A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study

随机森林 决策树 支持向量机 机器学习 朴素贝叶斯分类器 人工智能 梯度升压 逻辑回归 接收机工作特性 多层感知器 交叉验证 医学 计算机科学 统计 数学 人工神经网络
作者
Jun Wang,Hongmei Chen,Houwei Wang,Weichu Liu,Daomei Peng,Qinghua Zhao,Mingzhao Xiao
出处
期刊:Journal of Medical Internet Research 卷期号:25: e43815-e43815 被引量:7
标识
DOI:10.2196/43815
摘要

Background Numerous studies have identified risk factors for physical restraint (PR) use in older adults in long-term care facilities. Nevertheless, there is a lack of predictive tools to identify high-risk individuals. Objective We aimed to develop machine learning (ML)–based models to predict the risk of PR in older adults. Methods This study conducted a cross-sectional secondary data analysis based on 1026 older adults from 6 long-term care facilities in Chongqing, China, from July 2019 to November 2019. The primary outcome was the use of PR (yes or no), identified by 2 collectors’ direct observation. A total of 15 candidate predictors (older adults’ demographic and clinical factors) that could be commonly and easily collected from clinical practice were used to build 9 independent ML models: Gaussian Naïve Bayesian (GNB), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), extreme gradient boosting (XGBoost), and light gradient boosting machine (Lightgbm), as well as stacking ensemble ML. Performance was evaluated using accuracy, precision, recall, an F score, a comprehensive evaluation indicator (CEI) weighed by the above indicators, and the area under the receiver operating characteristic curve (AUC). A net benefit approach using the decision curve analysis (DCA) was performed to evaluate the clinical utility of the best model. Models were tested via 10-fold cross-validation. Feature importance was interpreted using Shapley Additive Explanations (SHAP). Results A total of 1026 older adults (mean 83.5, SD 7.6 years; n=586, 57.1% male older adults) and 265 restrained older adults were included in the study. All ML models performed well, with an AUC above 0.905 and an F score above 0.900. The 2 best independent models are RF (AUC 0.938, 95% CI 0.914-0.947) and SVM (AUC 0.949, 95% CI 0.911-0.953). The DCA demonstrated that the RF model displayed better clinical utility than other models. The stacking model combined with SVM, RF, and MLP performed best with AUC (0.950) and CEI (0.943) values, as well as the DCA curve indicated the best clinical utility. The SHAP plots demonstrated that the significant contributors to model performance were related to cognitive impairment, care dependency, mobility decline, physical agitation, and an indwelling tube. Conclusions The RF and stacking models had high performance and clinical utility. ML prediction models for predicting the probability of PR in older adults could offer clinical screening and decision support, which could help medical staff in the early identification and PR management of older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
satchzhao发布了新的文献求助10
刚刚
友好的妍完成签到 ,获得积分10
1秒前
香山叶正红完成签到 ,获得积分10
2秒前
TOM发布了新的文献求助10
2秒前
沙耶酱完成签到,获得积分10
2秒前
赢赢发布了新的文献求助10
3秒前
4秒前
尺素寸心完成签到,获得积分10
5秒前
6秒前
老实不尤完成签到,获得积分10
7秒前
CCL应助mammoth采纳,获得40
8秒前
9秒前
9秒前
10秒前
11秒前
盘尼西林给盘尼西林的求助进行了留言
11秒前
11秒前
香蕉觅云应助XXF采纳,获得10
11秒前
12秒前
大个应助招财不肥采纳,获得10
12秒前
xx发布了新的文献求助10
13秒前
joanna0932完成签到,获得积分10
13秒前
坚定亦竹完成签到,获得积分10
14秒前
mia完成签到,获得积分20
14秒前
14秒前
14秒前
CodeCraft应助zxx5012采纳,获得10
14秒前
16秒前
paparazzi221发布了新的文献求助10
16秒前
笑点低的大有完成签到 ,获得积分10
17秒前
孔小白发布了新的文献求助10
18秒前
18秒前
stephanie96发布了新的文献求助10
18秒前
Millie发布了新的文献求助10
19秒前
duxinyue应助sunzhiyu233采纳,获得10
19秒前
20秒前
喜悦夏之发布了新的文献求助10
21秒前
Chloe完成签到,获得积分10
21秒前
Kite完成签到,获得积分10
21秒前
JamesPei应助ZH的天方夜谭采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808