A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study

随机森林 决策树 支持向量机 机器学习 朴素贝叶斯分类器 人工智能 梯度升压 逻辑回归 接收机工作特性 多层感知器 交叉验证 医学 计算机科学 统计 数学 人工神经网络
作者
Jun Wang,Hongmei Chen,Houwei Wang,Weichu Liu,Daomei Peng,Qinghua Zhao,Mingzhao Xiao
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e43815-e43815 被引量:9
标识
DOI:10.2196/43815
摘要

Background Numerous studies have identified risk factors for physical restraint (PR) use in older adults in long-term care facilities. Nevertheless, there is a lack of predictive tools to identify high-risk individuals. Objective We aimed to develop machine learning (ML)–based models to predict the risk of PR in older adults. Methods This study conducted a cross-sectional secondary data analysis based on 1026 older adults from 6 long-term care facilities in Chongqing, China, from July 2019 to November 2019. The primary outcome was the use of PR (yes or no), identified by 2 collectors’ direct observation. A total of 15 candidate predictors (older adults’ demographic and clinical factors) that could be commonly and easily collected from clinical practice were used to build 9 independent ML models: Gaussian Naïve Bayesian (GNB), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), extreme gradient boosting (XGBoost), and light gradient boosting machine (Lightgbm), as well as stacking ensemble ML. Performance was evaluated using accuracy, precision, recall, an F score, a comprehensive evaluation indicator (CEI) weighed by the above indicators, and the area under the receiver operating characteristic curve (AUC). A net benefit approach using the decision curve analysis (DCA) was performed to evaluate the clinical utility of the best model. Models were tested via 10-fold cross-validation. Feature importance was interpreted using Shapley Additive Explanations (SHAP). Results A total of 1026 older adults (mean 83.5, SD 7.6 years; n=586, 57.1% male older adults) and 265 restrained older adults were included in the study. All ML models performed well, with an AUC above 0.905 and an F score above 0.900. The 2 best independent models are RF (AUC 0.938, 95% CI 0.914-0.947) and SVM (AUC 0.949, 95% CI 0.911-0.953). The DCA demonstrated that the RF model displayed better clinical utility than other models. The stacking model combined with SVM, RF, and MLP performed best with AUC (0.950) and CEI (0.943) values, as well as the DCA curve indicated the best clinical utility. The SHAP plots demonstrated that the significant contributors to model performance were related to cognitive impairment, care dependency, mobility decline, physical agitation, and an indwelling tube. Conclusions The RF and stacking models had high performance and clinical utility. ML prediction models for predicting the probability of PR in older adults could offer clinical screening and decision support, which could help medical staff in the early identification and PR management of older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
昔年完成签到,获得积分10
1秒前
huangwensou发布了新的文献求助10
2秒前
Sugar完成签到,获得积分10
2秒前
优雅狗发布了新的文献求助10
2秒前
3秒前
JamesPei应助tesla采纳,获得10
3秒前
3秒前
赵峰发布了新的文献求助10
4秒前
4秒前
桐桐应助sss采纳,获得10
5秒前
5秒前
谢慧发布了新的文献求助10
6秒前
6秒前
ang驳回了Jasper应助
6秒前
lina完成签到 ,获得积分10
7秒前
7秒前
刘齐发布了新的文献求助10
8秒前
HAHAHA发布了新的文献求助10
8秒前
lucky完成签到 ,获得积分10
9秒前
11秒前
12秒前
12秒前
自由大叔发布了新的文献求助10
12秒前
fearlessji完成签到 ,获得积分10
12秒前
美满朝雪完成签到,获得积分10
13秒前
LHZ发布了新的文献求助10
13秒前
William发布了新的文献求助10
14秒前
Zz完成签到 ,获得积分10
14秒前
14秒前
wuwu关注了科研通微信公众号
15秒前
开朗艳一发布了新的文献求助10
16秒前
16秒前
tesla发布了新的文献求助10
17秒前
17秒前
开朗向真发布了新的文献求助10
17秒前
眼睛大雨筠应助桃花嫣然采纳,获得20
19秒前
MULU完成签到 ,获得积分10
19秒前
无限的幻灵完成签到,获得积分10
19秒前
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961206
求助须知:如何正确求助?哪些是违规求助? 3507486
关于积分的说明 11136374
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790557
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186