A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study

随机森林 决策树 支持向量机 机器学习 朴素贝叶斯分类器 人工智能 梯度升压 逻辑回归 接收机工作特性 多层感知器 交叉验证 医学 计算机科学 统计 数学 人工神经网络
作者
Jun Wang,Hongmei Chen,Houwei Wang,Weichu Liu,Daomei Peng,Qinghua Zhao,Mingzhao Xiao
出处
期刊:Journal of Medical Internet Research 卷期号:25: e43815-e43815 被引量:7
标识
DOI:10.2196/43815
摘要

Background Numerous studies have identified risk factors for physical restraint (PR) use in older adults in long-term care facilities. Nevertheless, there is a lack of predictive tools to identify high-risk individuals. Objective We aimed to develop machine learning (ML)–based models to predict the risk of PR in older adults. Methods This study conducted a cross-sectional secondary data analysis based on 1026 older adults from 6 long-term care facilities in Chongqing, China, from July 2019 to November 2019. The primary outcome was the use of PR (yes or no), identified by 2 collectors’ direct observation. A total of 15 candidate predictors (older adults’ demographic and clinical factors) that could be commonly and easily collected from clinical practice were used to build 9 independent ML models: Gaussian Naïve Bayesian (GNB), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), extreme gradient boosting (XGBoost), and light gradient boosting machine (Lightgbm), as well as stacking ensemble ML. Performance was evaluated using accuracy, precision, recall, an F score, a comprehensive evaluation indicator (CEI) weighed by the above indicators, and the area under the receiver operating characteristic curve (AUC). A net benefit approach using the decision curve analysis (DCA) was performed to evaluate the clinical utility of the best model. Models were tested via 10-fold cross-validation. Feature importance was interpreted using Shapley Additive Explanations (SHAP). Results A total of 1026 older adults (mean 83.5, SD 7.6 years; n=586, 57.1% male older adults) and 265 restrained older adults were included in the study. All ML models performed well, with an AUC above 0.905 and an F score above 0.900. The 2 best independent models are RF (AUC 0.938, 95% CI 0.914-0.947) and SVM (AUC 0.949, 95% CI 0.911-0.953). The DCA demonstrated that the RF model displayed better clinical utility than other models. The stacking model combined with SVM, RF, and MLP performed best with AUC (0.950) and CEI (0.943) values, as well as the DCA curve indicated the best clinical utility. The SHAP plots demonstrated that the significant contributors to model performance were related to cognitive impairment, care dependency, mobility decline, physical agitation, and an indwelling tube. Conclusions The RF and stacking models had high performance and clinical utility. ML prediction models for predicting the probability of PR in older adults could offer clinical screening and decision support, which could help medical staff in the early identification and PR management of older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昌昌昌发布了新的文献求助10
1秒前
双予发布了新的文献求助10
2秒前
du完成签到,获得积分10
2秒前
pigff完成签到,获得积分10
2秒前
yueqihong发布了新的文献求助10
3秒前
典雅三颜完成签到 ,获得积分10
3秒前
Lance完成签到,获得积分10
6秒前
zsy完成签到,获得积分10
7秒前
7秒前
gaobowang发布了新的文献求助20
8秒前
8秒前
二二二完成签到,获得积分10
9秒前
多啦a萌完成签到,获得积分10
10秒前
LWQ完成签到,获得积分10
11秒前
陈陈发布了新的文献求助10
11秒前
胜哥的歌发布了新的文献求助10
12秒前
13秒前
帅气的襄发布了新的文献求助10
14秒前
14秒前
15秒前
皓月星辰完成签到,获得积分10
16秒前
小奶狗完成签到,获得积分20
17秒前
能干的雨发布了新的文献求助10
18秒前
lao333完成签到,获得积分10
18秒前
丘比特应助Meteor采纳,获得10
18秒前
小飞侠完成签到,获得积分10
18秒前
今后应助阿钟采纳,获得30
18秒前
tgytc完成签到 ,获得积分10
19秒前
传奇3应助ymu采纳,获得10
20秒前
Uykizhao完成签到,获得积分10
20秒前
kamola0807完成签到,获得积分10
20秒前
麻明英完成签到,获得积分10
21秒前
搜集达人应助怡然雨雪采纳,获得10
21秒前
wanci应助帅气的襄采纳,获得10
21秒前
enen发布了新的文献求助30
22秒前
所所应助王磊采纳,获得10
23秒前
24秒前
呆桃完成签到 ,获得积分10
25秒前
袁野完成签到,获得积分10
25秒前
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259713
求助须知:如何正确求助?哪些是违规求助? 2901203
关于积分的说明 8314612
捐赠科研通 2570733
什么是DOI,文献DOI怎么找? 1396653
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631822