A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study

随机森林 决策树 支持向量机 机器学习 朴素贝叶斯分类器 人工智能 梯度升压 逻辑回归 接收机工作特性 多层感知器 交叉验证 医学 计算机科学 统计 数学 人工神经网络
作者
Jun Wang,Hongmei Chen,Houwei Wang,Weichu Liu,Daomei Peng,Qinghua Zhao,Mingzhao Xiao
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e43815-e43815 被引量:9
标识
DOI:10.2196/43815
摘要

Background Numerous studies have identified risk factors for physical restraint (PR) use in older adults in long-term care facilities. Nevertheless, there is a lack of predictive tools to identify high-risk individuals. Objective We aimed to develop machine learning (ML)–based models to predict the risk of PR in older adults. Methods This study conducted a cross-sectional secondary data analysis based on 1026 older adults from 6 long-term care facilities in Chongqing, China, from July 2019 to November 2019. The primary outcome was the use of PR (yes or no), identified by 2 collectors’ direct observation. A total of 15 candidate predictors (older adults’ demographic and clinical factors) that could be commonly and easily collected from clinical practice were used to build 9 independent ML models: Gaussian Naïve Bayesian (GNB), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), extreme gradient boosting (XGBoost), and light gradient boosting machine (Lightgbm), as well as stacking ensemble ML. Performance was evaluated using accuracy, precision, recall, an F score, a comprehensive evaluation indicator (CEI) weighed by the above indicators, and the area under the receiver operating characteristic curve (AUC). A net benefit approach using the decision curve analysis (DCA) was performed to evaluate the clinical utility of the best model. Models were tested via 10-fold cross-validation. Feature importance was interpreted using Shapley Additive Explanations (SHAP). Results A total of 1026 older adults (mean 83.5, SD 7.6 years; n=586, 57.1% male older adults) and 265 restrained older adults were included in the study. All ML models performed well, with an AUC above 0.905 and an F score above 0.900. The 2 best independent models are RF (AUC 0.938, 95% CI 0.914-0.947) and SVM (AUC 0.949, 95% CI 0.911-0.953). The DCA demonstrated that the RF model displayed better clinical utility than other models. The stacking model combined with SVM, RF, and MLP performed best with AUC (0.950) and CEI (0.943) values, as well as the DCA curve indicated the best clinical utility. The SHAP plots demonstrated that the significant contributors to model performance were related to cognitive impairment, care dependency, mobility decline, physical agitation, and an indwelling tube. Conclusions The RF and stacking models had high performance and clinical utility. ML prediction models for predicting the probability of PR in older adults could offer clinical screening and decision support, which could help medical staff in the early identification and PR management of older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Charon发布了新的文献求助10
刚刚
yiwen完成签到,获得积分10
刚刚
jyyg发布了新的文献求助10
刚刚
jyyg发布了新的文献求助30
刚刚
jyyg发布了新的文献求助10
刚刚
jyyg发布了新的文献求助10
刚刚
jyyg发布了新的文献求助10
刚刚
jyyg发布了新的文献求助10
刚刚
刚刚
jyyg发布了新的文献求助30
刚刚
刚刚
刚刚
炙热笑旋发布了新的文献求助10
1秒前
没有名字应助ff采纳,获得20
1秒前
1秒前
郑娟完成签到,获得积分10
1秒前
大大彬发布了新的文献求助10
1秒前
syn182286发布了新的文献求助10
2秒前
小杨完成签到,获得积分10
2秒前
李健应助安然采纳,获得10
2秒前
可爱的函函应助杨惠文采纳,获得10
3秒前
3秒前
超帅书本完成签到 ,获得积分10
3秒前
超靓诺言发布了新的文献求助10
3秒前
4秒前
飘逸问薇完成签到 ,获得积分10
4秒前
4秒前
欧博发布了新的文献求助10
4秒前
wangxiaoyating完成签到,获得积分10
5秒前
enjoy完成签到 ,获得积分10
5秒前
5秒前
搜集达人应助琪哒采纳,获得10
5秒前
5秒前
CipherSage应助离线采纳,获得10
5秒前
小巫发布了新的文献求助10
5秒前
5秒前
yiwen发布了新的文献求助10
6秒前
Ava应助超级面包采纳,获得10
6秒前
535988关注了科研通微信公众号
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599915
求助须知:如何正确求助?哪些是违规求助? 4010315
关于积分的说明 12415771
捐赠科研通 3690073
什么是DOI,文献DOI怎么找? 2034106
邀请新用户注册赠送积分活动 1067453
科研通“疑难数据库(出版商)”最低求助积分说明 952401