A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study

随机森林 决策树 支持向量机 机器学习 朴素贝叶斯分类器 人工智能 梯度升压 逻辑回归 接收机工作特性 多层感知器 交叉验证 医学 计算机科学 统计 数学 人工神经网络
作者
Jun Wang,Hongmei Chen,Houwei Wang,Weichu Liu,Daomei Peng,Qinghua Zhao,Mingzhao Xiao
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e43815-e43815 被引量:9
标识
DOI:10.2196/43815
摘要

Background Numerous studies have identified risk factors for physical restraint (PR) use in older adults in long-term care facilities. Nevertheless, there is a lack of predictive tools to identify high-risk individuals. Objective We aimed to develop machine learning (ML)–based models to predict the risk of PR in older adults. Methods This study conducted a cross-sectional secondary data analysis based on 1026 older adults from 6 long-term care facilities in Chongqing, China, from July 2019 to November 2019. The primary outcome was the use of PR (yes or no), identified by 2 collectors’ direct observation. A total of 15 candidate predictors (older adults’ demographic and clinical factors) that could be commonly and easily collected from clinical practice were used to build 9 independent ML models: Gaussian Naïve Bayesian (GNB), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), extreme gradient boosting (XGBoost), and light gradient boosting machine (Lightgbm), as well as stacking ensemble ML. Performance was evaluated using accuracy, precision, recall, an F score, a comprehensive evaluation indicator (CEI) weighed by the above indicators, and the area under the receiver operating characteristic curve (AUC). A net benefit approach using the decision curve analysis (DCA) was performed to evaluate the clinical utility of the best model. Models were tested via 10-fold cross-validation. Feature importance was interpreted using Shapley Additive Explanations (SHAP). Results A total of 1026 older adults (mean 83.5, SD 7.6 years; n=586, 57.1% male older adults) and 265 restrained older adults were included in the study. All ML models performed well, with an AUC above 0.905 and an F score above 0.900. The 2 best independent models are RF (AUC 0.938, 95% CI 0.914-0.947) and SVM (AUC 0.949, 95% CI 0.911-0.953). The DCA demonstrated that the RF model displayed better clinical utility than other models. The stacking model combined with SVM, RF, and MLP performed best with AUC (0.950) and CEI (0.943) values, as well as the DCA curve indicated the best clinical utility. The SHAP plots demonstrated that the significant contributors to model performance were related to cognitive impairment, care dependency, mobility decline, physical agitation, and an indwelling tube. Conclusions The RF and stacking models had high performance and clinical utility. ML prediction models for predicting the probability of PR in older adults could offer clinical screening and decision support, which could help medical staff in the early identification and PR management of older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助摆烂包菜采纳,获得10
刚刚
1秒前
2秒前
乔钰涵发布了新的文献求助10
3秒前
李健的粉丝团团长应助bing采纳,获得10
3秒前
3秒前
斯文败类应助月宸采纳,获得10
3秒前
hhh完成签到,获得积分20
5秒前
调皮芫发布了新的文献求助10
7秒前
小小小发布了新的文献求助10
7秒前
顾矜应助王明浩采纳,获得30
8秒前
8秒前
Jasper应助紧张的毛衣采纳,获得10
8秒前
10秒前
10秒前
陆66完成签到 ,获得积分10
11秒前
12秒前
在水一方应助调皮芫采纳,获得10
13秒前
bing发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
17秒前
17秒前
mwl发布了新的文献求助10
19秒前
dui发布了新的文献求助10
19秒前
zydd完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助150
19秒前
21秒前
21秒前
RR发布了新的文献求助10
22秒前
23秒前
崔懿龍发布了新的文献求助10
23秒前
24秒前
希望天下0贩的0应助小渔采纳,获得10
25秒前
25秒前
牛马发布了新的文献求助10
26秒前
liu66完成签到,获得积分10
26秒前
walk发布了新的文献求助10
26秒前
东方天奇完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950925
求助须知:如何正确求助?哪些是违规求助? 4213683
关于积分的说明 13105422
捐赠科研通 3995528
什么是DOI,文献DOI怎么找? 2186939
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115421