Prediction of mechanical properties of high-entropy ceramics by deep learning with compositional descriptors

材料科学 陶瓷 人工神经网络 均方误差 卷积神经网络 决定系数 熵(时间箭头) 热力学 人工智能 机器学习 数学 冶金 计算机科学 统计 物理
作者
Chunghee Nam
出处
期刊:Materials today communications [Elsevier]
卷期号:35: 105949-105949 被引量:5
标识
DOI:10.1016/j.mtcomm.2023.105949
摘要

High-entropy ceramics (HECs) have garnered considerable research attention due to their unique characteristics and potential applications in extreme environmental conditions. As numerous elements can act as constituent materials for HECs, the trial-and-error approach as well as the computational approach are time-consuming and expensive for developing new HECs. In this study, we developed a deep learning model using a convolutional neural network (CNN) based on only the compositional descriptors of the constituent elements, e.g., rock-salt carbides, nitrides, and carbonitrides, to predict the corresponding mechanical properties of bulk (K), shear (G) and Young (Y) moduli. For comparison, XGboost, one of the ensemble algorithms, and an artificial neural network (ANN) were applied to predict the mechanical properties of HECs. The CNN models demonstrated the highest performance metrics of determination coefficient (R2 =0.856, 0.909, and 0.921 for K, G, and Y, respectively) and low root–mean–square errors (RMSE = 19.129, 14.540, and 31.929 GPa for K, G, and Y, respectively), which were consistent with the experimental results reported in previous studies. We further employed the CNN models to high-hardness HECs, evaluated their hardness (H) based on the empirical formulae of Tian, Chen, and Teter’s models, and compared them with the results reported in the existing literature. The hardness calculated using Teter’s model displayed excellent agreement with the experimental results for higher hardness HECs (H ≥ 27 GPa), while the estimated values by Tian’s models are consistent with the experimental results for lower hardness HECs (H < 27 GPa).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fuguier完成签到,获得积分10
1秒前
举个栗子8完成签到 ,获得积分20
2秒前
与可完成签到,获得积分10
2秒前
118QQ完成签到,获得积分10
3秒前
烯灯完成签到,获得积分10
3秒前
陈牛逼完成签到 ,获得积分10
3秒前
4秒前
wmszhd完成签到,获得积分10
4秒前
丘比特应助帅哥吴克采纳,获得10
4秒前
宋呵呵发布了新的文献求助100
5秒前
6秒前
5433完成签到,获得积分10
7秒前
温言叮叮铛完成签到,获得积分10
7秒前
9秒前
光亮元枫发布了新的文献求助10
9秒前
陈牛逼关注了科研通微信公众号
9秒前
tianxiong完成签到 ,获得积分10
9秒前
ccc完成签到,获得积分10
10秒前
等我吃胖完成签到,获得积分10
10秒前
幽默胜完成签到,获得积分10
10秒前
10秒前
11秒前
laoli2022完成签到,获得积分10
11秒前
11秒前
czy发布了新的文献求助30
12秒前
一片氯丙嗪完成签到,获得积分20
12秒前
宇是眼中星眸完成签到 ,获得积分10
12秒前
elena完成签到,获得积分10
13秒前
李李李完成签到,获得积分10
13秒前
redj完成签到 ,获得积分10
13秒前
momi完成签到 ,获得积分10
14秒前
安静凡旋完成签到 ,获得积分10
14秒前
以恒之心完成签到,获得积分10
14秒前
阿龙发布了新的文献求助10
14秒前
huhuan完成签到,获得积分10
14秒前
洁净的士晋完成签到,获得积分10
15秒前
谢谢发布了新的文献求助10
15秒前
华仔应助tleeny采纳,获得10
16秒前
微笑凡之完成签到 ,获得积分10
16秒前
意忆完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550506
求助须知:如何正确求助?哪些是违规求助? 3126751
关于积分的说明 9370254
捐赠科研通 2825915
什么是DOI,文献DOI怎么找? 1553482
邀请新用户注册赠送积分活动 724886
科研通“疑难数据库(出版商)”最低求助积分说明 714483