已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimization of Azare low-grade barite beneficiation: comparative study of response surface methodology and artificial neural network approach

响应面法 中心组合设计 选矿 人工神经网络 实验设计 Box-Behnken设计 数学 材料科学 均方误差 分析化学(期刊) 化学 色谱法 计算机科学 人工智能 统计 冶金
作者
Lekan Taofeek Popoola,Oluwafemi Fadayini
出处
期刊:Heliyon [Elsevier]
卷期号:9 (4): e15338-e15338 被引量:4
标识
DOI:10.1016/j.heliyon.2023.e15338
摘要

This study examined the efficacy of response surface methodology (RSM) and artificial neural network (ANN) optimization approaches on barite composition optimization from low-grade Azare barite beneficiation. The Box-Behnken Design (BBD) and Central Composite Design (CCD) approaches were used as RSM methods. The best predictive optimization tool was determined via a comparative study between these methods and ANN. Barite mass (60–100 g), reaction time (15–45 min) and particle size (150–450 μm) at three levels were considered as the process parameters. The ANN architecture is a 3-16-1 feed-forward type. Sigmoid transfer function was adopted and mean square error (MSE) technique was used for network training. Experimental data were divided into training, validation and testing. Batch experimental result revealed maximum barite composition of 98.07% and 95.43% at barite mass, reaction time and particle size of 100 g, 30 min and 150 μm; and 80 g, 30 min and 300 μm for BBD and CCD respectively. The predicted and experimental barite compositions of 98.71% and 96.98%; and 94.59% and 91.05% were recorded at optimum predicted point for BBD and CCD respectively. The analysis of variance revealed high significance of developed model and process parameters. The correlation of determination recorded by ANN for training, validation and testing were 0.9905, 0.9419 and 0.9997; and 0.9851, 0.9381 and 0.9911 for BBD and CCD. The best validation performance was 48.5437 and 5.1777 at epoch 5 and 1 for BBD and CCD respectively. In conclusion, the overall mean squared error of 14.972, 43.560 and 0.255; R2 value of 0.942, 0.9272 and 0.9711; and absolute average deviation of 3.610, 4.217 and 0.370 recorded for BBD, CCD and ANN respectively proved ANN to be the best.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
许伟洋完成签到 ,获得积分10
4秒前
4秒前
ff完成签到,获得积分20
5秒前
556完成签到,获得积分10
8秒前
1yyyyyy完成签到,获得积分10
9秒前
wop111应助tuanheqi采纳,获得20
10秒前
11秒前
ylh完成签到,获得积分10
13秒前
风中故事发布了新的文献求助10
17秒前
飞童完成签到 ,获得积分10
18秒前
兴尽晚回舟完成签到 ,获得积分10
19秒前
21秒前
Sunshine应助包容煎饼采纳,获得10
21秒前
22秒前
yang完成签到,获得积分10
22秒前
kun发布了新的文献求助10
25秒前
不想上班了完成签到 ,获得积分10
27秒前
leek完成签到 ,获得积分10
30秒前
31秒前
Docgyj完成签到 ,获得积分0
31秒前
43秒前
Owen应助皮皮猪大王采纳,获得10
46秒前
48秒前
早睡早起身体好完成签到,获得积分10
49秒前
49秒前
超人不会飞完成签到 ,获得积分10
56秒前
stresm完成签到,获得积分10
56秒前
56秒前
惠香香的完成签到,获得积分10
58秒前
是菜团子呀完成签到 ,获得积分10
59秒前
隐形曼青应助lisongbo采纳,获得10
1分钟前
小蘑菇应助峡星牙采纳,获得10
1分钟前
三冬四夏完成签到 ,获得积分10
1分钟前
小易完成签到 ,获得积分10
1分钟前
1分钟前
阿朱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731434
求助须知:如何正确求助?哪些是违规求助? 5330471
关于积分的说明 15320989
捐赠科研通 4877485
什么是DOI,文献DOI怎么找? 2620351
邀请新用户注册赠送积分活动 1569604
关于科研通互助平台的介绍 1526113