Optimization of Azare low-grade barite beneficiation: comparative study of response surface methodology and artificial neural network approach

响应面法 中心组合设计 选矿 人工神经网络 实验设计 Box-Behnken设计 数学 材料科学 均方误差 分析化学(期刊) 化学 色谱法 计算机科学 人工智能 统计 冶金
作者
Lekan Taofeek Popoola,Oluwafemi Fadayini
出处
期刊:Heliyon [Elsevier]
卷期号:9 (4): e15338-e15338 被引量:4
标识
DOI:10.1016/j.heliyon.2023.e15338
摘要

This study examined the efficacy of response surface methodology (RSM) and artificial neural network (ANN) optimization approaches on barite composition optimization from low-grade Azare barite beneficiation. The Box-Behnken Design (BBD) and Central Composite Design (CCD) approaches were used as RSM methods. The best predictive optimization tool was determined via a comparative study between these methods and ANN. Barite mass (60–100 g), reaction time (15–45 min) and particle size (150–450 μm) at three levels were considered as the process parameters. The ANN architecture is a 3-16-1 feed-forward type. Sigmoid transfer function was adopted and mean square error (MSE) technique was used for network training. Experimental data were divided into training, validation and testing. Batch experimental result revealed maximum barite composition of 98.07% and 95.43% at barite mass, reaction time and particle size of 100 g, 30 min and 150 μm; and 80 g, 30 min and 300 μm for BBD and CCD respectively. The predicted and experimental barite compositions of 98.71% and 96.98%; and 94.59% and 91.05% were recorded at optimum predicted point for BBD and CCD respectively. The analysis of variance revealed high significance of developed model and process parameters. The correlation of determination recorded by ANN for training, validation and testing were 0.9905, 0.9419 and 0.9997; and 0.9851, 0.9381 and 0.9911 for BBD and CCD. The best validation performance was 48.5437 and 5.1777 at epoch 5 and 1 for BBD and CCD respectively. In conclusion, the overall mean squared error of 14.972, 43.560 and 0.255; R2 value of 0.942, 0.9272 and 0.9711; and absolute average deviation of 3.610, 4.217 and 0.370 recorded for BBD, CCD and ANN respectively proved ANN to be the best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助inRe采纳,获得10
1秒前
充电宝应助pathway采纳,获得10
1秒前
hajy发布了新的文献求助10
1秒前
吨吨关注了科研通微信公众号
1秒前
2秒前
愤怒的紫发布了新的文献求助10
2秒前
李爱国应助00采纳,获得10
2秒前
3秒前
3秒前
司马绮山发布了新的文献求助10
3秒前
Dopamine发布了新的文献求助10
6秒前
6秒前
禾叶完成签到 ,获得积分10
7秒前
闾丘若之发布了新的文献求助10
8秒前
8秒前
爆米花应助fengttaotao12采纳,获得10
8秒前
叮叮完成签到 ,获得积分10
9秒前
SciGPT应助文章必发采纳,获得10
9秒前
holl完成签到,获得积分10
9秒前
10秒前
梁世秀完成签到,获得积分10
11秒前
Jesse发布了新的文献求助10
11秒前
12秒前
orixero应助大脸猫采纳,获得10
13秒前
李纪磊发布了新的文献求助10
15秒前
闾丘若之完成签到,获得积分10
17秒前
在水一方应助Star采纳,获得10
17秒前
Harbour-Y发布了新的文献求助10
18秒前
18秒前
研友_8o5V2n发布了新的文献求助10
19秒前
小6s发布了新的文献求助30
19秒前
四方发布了新的文献求助10
19秒前
22秒前
吨吨发布了新的文献求助20
22秒前
深情安青应助WEnyu采纳,获得10
24秒前
24秒前
27秒前
27秒前
27秒前
可耐的毛衣完成签到,获得积分20
27秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821913
关于积分的说明 7937142
捐赠科研通 2482412
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627