TDPPL-Net: A Lightweight Real-Time Tomato Detection and Picking Point Localization Model for Harvesting Robots

计算机科学 人工智能 最小边界框 计算机视觉 棱锥(几何) 目标检测 特征(语言学) 卷积神经网络 实时计算 模式识别(心理学) 数学 几何学 语言学 图像(数学) 哲学
作者
Chengyuan Song,Kai Wang,Chao Wang,Yanan Tian,Xinjie Wei,Cuijian Li,Qilin An,Song Jian
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37650-37664 被引量:3
标识
DOI:10.1109/access.2023.3260222
摘要

Existing target detection models are large and have multiple network parameters, which can severely slow down the detection speed when deployed on small, low-cost GPU-free Industrial Personal Computers (IPC). As a result, this study proposes a lightweight real-time tomato detection and point-picking integrated network model based on YOLOv5 (TDPPL-Net). Firstly, the algorithm replaces the YOLOv5 backbone with a four-group lightweight downsampling model consisting of Ghost Conv and Ghost Bottleneck to reduce the model size, while adding the attention mechanism SimAM module to improve detection accuracy after each scale's feature map. Secondly, the Spatial Pyramid Pooling-Fast(SPPF) network structure is used and the convolutional layers in the (Feature Pyramid Network and Path Aggregation Network)FPN+PAN structure are replaced with a depth-separable convolution to reduce the computational effort. Finally, the center of the bounding box is used as the picking point, and the corresponding depth information is obtained in combination with the Intel RealSense D435 camera, which is converted into 3D coordinates under the robot arm coordinate system after hand-eye calibration. The experimental results show that TDPPL-Net reduces the number of parameters by 59.84% compared with the original YOLOv5, the model volume is only 40% of the original, the mAP is 93.36, and the real-time detection speed on the IPC without GPU acceleration is 31.41 FPS, which is 170.31% higher than YOLOv5. The TDPPL-Net increases detection speed on low-performance equipment without compromising detection accuracy. It can detect and locate tomato picking points in real-time in the complex natural environment, which can meet the working requirements of harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三清小爷完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
筱噺发布了新的文献求助10
4秒前
5秒前
fffff完成签到,获得积分10
5秒前
6秒前
7秒前
Kilig发布了新的文献求助10
7秒前
游侠客发布了新的文献求助10
7秒前
seayoa发布了新的文献求助20
7秒前
拓跋涵易发布了新的文献求助10
8秒前
Murmures发布了新的文献求助10
9秒前
9秒前
10秒前
酷酷巧蟹发布了新的文献求助10
10秒前
111完成签到 ,获得积分10
10秒前
烛光发布了新的文献求助10
11秒前
xiaohunagya发布了新的文献求助10
11秒前
霸气幼荷发布了新的文献求助10
11秒前
Lucy完成签到 ,获得积分10
11秒前
Dreamer0422完成签到,获得积分10
12秒前
Kilig完成签到,获得积分10
13秒前
liu发布了新的文献求助10
13秒前
好大一只小坏蛋完成签到,获得积分10
13秒前
英俊的铭应助游侠客采纳,获得10
13秒前
jwb711发布了新的文献求助10
14秒前
桐桐应助严婉蓉采纳,获得10
14秒前
lllyf完成签到,获得积分20
17秒前
Jasper应助yu采纳,获得10
20秒前
20秒前
SciGPT应助有魅力丝采纳,获得10
21秒前
我先睡了应助动人的书雪采纳,获得10
23秒前
闪闪发布了新的文献求助10
25秒前
勤恳的仰发布了新的文献求助20
25秒前
小样发布了新的文献求助10
27秒前
orixero应助smiling采纳,获得10
27秒前
一事无成的研一完成签到 ,获得积分10
27秒前
marigold完成签到 ,获得积分10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999817
求助须知:如何正确求助?哪些是违规求助? 3539272
关于积分的说明 11276402
捐赠科研通 3277909
什么是DOI,文献DOI怎么找? 1807781
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142