TDPPL-Net: A Lightweight Real-Time Tomato Detection and Picking Point Localization Model for Harvesting Robots

计算机科学 人工智能 最小边界框 计算机视觉 棱锥(几何) 目标检测 特征(语言学) 卷积神经网络 实时计算 模式识别(心理学) 数学 语言学 哲学 几何学 图像(数学)
作者
Chengyuan Song,Kai Wang,Chao Wang,Yanan Tian,Xinjie Wei,Cuijian Li,Qilin An,Song Jian
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37650-37664 被引量:3
标识
DOI:10.1109/access.2023.3260222
摘要

Existing target detection models are large and have multiple network parameters, which can severely slow down the detection speed when deployed on small, low-cost GPU-free Industrial Personal Computers (IPC). As a result, this study proposes a lightweight real-time tomato detection and point-picking integrated network model based on YOLOv5 (TDPPL-Net). Firstly, the algorithm replaces the YOLOv5 backbone with a four-group lightweight downsampling model consisting of Ghost Conv and Ghost Bottleneck to reduce the model size, while adding the attention mechanism SimAM module to improve detection accuracy after each scale's feature map. Secondly, the Spatial Pyramid Pooling-Fast(SPPF) network structure is used and the convolutional layers in the (Feature Pyramid Network and Path Aggregation Network)FPN+PAN structure are replaced with a depth-separable convolution to reduce the computational effort. Finally, the center of the bounding box is used as the picking point, and the corresponding depth information is obtained in combination with the Intel RealSense D435 camera, which is converted into 3D coordinates under the robot arm coordinate system after hand-eye calibration. The experimental results show that TDPPL-Net reduces the number of parameters by 59.84% compared with the original YOLOv5, the model volume is only 40% of the original, the mAP is 93.36, and the real-time detection speed on the IPC without GPU acceleration is 31.41 FPS, which is 170.31% higher than YOLOv5. The TDPPL-Net increases detection speed on low-performance equipment without compromising detection accuracy. It can detect and locate tomato picking points in real-time in the complex natural environment, which can meet the working requirements of harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木心发布了新的文献求助30
1秒前
内向秀发完成签到,获得积分10
1秒前
2秒前
2秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
孤独的南松完成签到,获得积分10
5秒前
隋阳完成签到,获得积分10
7秒前
念之完成签到 ,获得积分10
7秒前
huibzh发布了新的文献求助30
8秒前
包容友儿完成签到,获得积分10
9秒前
所所应助xiaochuan采纳,获得10
9秒前
积极若云发布了新的文献求助10
10秒前
14秒前
内向秀发发布了新的文献求助10
15秒前
XIAYU123456发布了新的文献求助10
15秒前
16秒前
18秒前
hyd发布了新的文献求助30
19秒前
20秒前
美丽的鞋垫完成签到 ,获得积分10
21秒前
热心紫雪完成签到,获得积分10
23秒前
顾矜应助哼哼采纳,获得10
24秒前
eawen完成签到 ,获得积分20
24秒前
25秒前
虚幻伯云发布了新的文献求助10
25秒前
25秒前
annie完成签到,获得积分10
26秒前
蒋时晏应助hyd采纳,获得10
26秒前
赘婿应助王小小采纳,获得10
28秒前
细心平灵发布了新的文献求助10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293276
求助须知:如何正确求助?哪些是违规求助? 2929410
关于积分的说明 8441615
捐赠科研通 2601546
什么是DOI,文献DOI怎么找? 1419967
科研通“疑难数据库(出版商)”最低求助积分说明 660479
邀请新用户注册赠送积分活动 643063