sEMG-Based Gesture Recognition Using Temporal History

人工智能 手势 模式识别(心理学) 手势识别 计算机科学 特征提取 语音识别 计算机视觉
作者
Chaerin Hong,Seongsik Park,Kim Keehoon
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 2655-2666
标识
DOI:10.1109/tbme.2023.3261336
摘要

Surface electromyography (sEMG) patterns have been decoded using learning-based methods that determine complicated nonlinear decision boundaries. However, overlapping classes in sEMG pattern recognition still degrade the classification accuracy because they cannot be separated by the decision boundaries. We hypothesized that certain overlapping classes can be separated while tracing the temporal history of sEMG patterns. Therefore, a novel post-processing method is proposed to adjust classification errors using the separated patterns from the temporal history of overlapping classes. The proposed method confirms the confidence of the prediction result by calculating the instantaneous pattern separability for the sequential sEMG input. The prediction result with high separability pattern is considered to have a high confidence of being correct (reliable). This result is stored for adjusting the next sEMG input. When the subsequent prediction is identified as having low confidence (unreliable), the predicted result is adjusted using the stored reliable predicted results. The proposed method adds an adjustment step to an existing classifier (maximum likelihood classifier (MLC), k-nearest neighbor (KNN), and support vector machine (SVM)), such that it can be attached to the back-end regardless of the type of classifier. Ten subjects performed 13 types of hand gestures, including overlapping patterns. The overall classification accuracy was enhanced to 88.93%(+8.12%p, MLC), 91.31%(+7.68%p, KNN), and 99.65%(+11.63%p, SVM) after the implementation of the proposed post-processing. Additionally, a faster and more accurate gesture classification was achieved with accuracy enhancement before gesture completion as 85.62%(+4.23%p, MLC), 89.77%(+4.23%p, KNN), and 97.62%(+11.12%p, SVM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
trial发布了新的文献求助10
1秒前
妙aaa发布了新的文献求助10
1秒前
华仔应助zhabgyucheng采纳,获得10
1秒前
LEEJ完成签到,获得积分10
1秒前
euy发布了新的文献求助10
1秒前
2秒前
august发布了新的文献求助10
2秒前
陈住气完成签到,获得积分20
2秒前
柳如花完成签到,获得积分10
2秒前
xiangdemeilo发布了新的文献求助10
3秒前
乐天林发布了新的文献求助10
4秒前
馒头完成签到 ,获得积分10
4秒前
Jasper应助梦雨星辰采纳,获得10
4秒前
勤劳的师完成签到,获得积分10
4秒前
Landau发布了新的文献求助10
5秒前
华仔应助王晓芳采纳,获得10
5秒前
6秒前
wql完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
共享精神应助大宝慧采纳,获得10
7秒前
独狼完成签到 ,获得积分10
8秒前
大个应助wxl采纳,获得10
8秒前
lxy发布了新的文献求助10
8秒前
高嘉完成签到,获得积分10
9秒前
xiangdemeilo完成签到,获得积分10
9秒前
Landau完成签到,获得积分10
9秒前
如意静白完成签到,获得积分10
9秒前
10秒前
sonicX完成签到,获得积分10
10秒前
Kyrie完成签到,获得积分10
12秒前
上官若男应助SibetHu采纳,获得10
12秒前
12秒前
yin完成签到,获得积分10
12秒前
动听不二关注了科研通微信公众号
12秒前
12秒前
12秒前
情怀应助HuangXintong采纳,获得20
14秒前
14秒前
深情安青应助123采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072617
求助须知:如何正确求助?哪些是违规求助? 4292947
关于积分的说明 13376665
捐赠科研通 4114155
什么是DOI,文献DOI怎么找? 2252906
邀请新用户注册赠送积分活动 1257594
关于科研通互助平台的介绍 1190476