sEMG-Based Gesture Recognition Using Temporal History

人工智能 手势 模式识别(心理学) 手势识别 计算机科学 特征提取 语音识别 计算机视觉
作者
Chaerin Hong,Seongsik Park,Kim Keehoon
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 2655-2666
标识
DOI:10.1109/tbme.2023.3261336
摘要

Surface electromyography (sEMG) patterns have been decoded using learning-based methods that determine complicated nonlinear decision boundaries. However, overlapping classes in sEMG pattern recognition still degrade the classification accuracy because they cannot be separated by the decision boundaries. We hypothesized that certain overlapping classes can be separated while tracing the temporal history of sEMG patterns. Therefore, a novel post-processing method is proposed to adjust classification errors using the separated patterns from the temporal history of overlapping classes. The proposed method confirms the confidence of the prediction result by calculating the instantaneous pattern separability for the sequential sEMG input. The prediction result with high separability pattern is considered to have a high confidence of being correct (reliable). This result is stored for adjusting the next sEMG input. When the subsequent prediction is identified as having low confidence (unreliable), the predicted result is adjusted using the stored reliable predicted results. The proposed method adds an adjustment step to an existing classifier (maximum likelihood classifier (MLC), k-nearest neighbor (KNN), and support vector machine (SVM)), such that it can be attached to the back-end regardless of the type of classifier. Ten subjects performed 13 types of hand gestures, including overlapping patterns. The overall classification accuracy was enhanced to 88.93%(+8.12%p, MLC), 91.31%(+7.68%p, KNN), and 99.65%(+11.63%p, SVM) after the implementation of the proposed post-processing. Additionally, a faster and more accurate gesture classification was achieved with accuracy enhancement before gesture completion as 85.62%(+4.23%p, MLC), 89.77%(+4.23%p, KNN), and 97.62%(+11.12%p, SVM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助迷路惋清采纳,获得10
1秒前
1秒前
1秒前
1秒前
他忽然的人完成签到 ,获得积分10
1秒前
more完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
英勇的小熊猫完成签到 ,获得积分10
2秒前
Cassiopiea19发布了新的文献求助10
3秒前
3秒前
慕青应助糊涂的MJ采纳,获得10
3秒前
打打应助鲸鱼采纳,获得10
3秒前
领导范儿应助杜祖盛采纳,获得10
4秒前
ding应助guoguo采纳,获得10
5秒前
zsx发布了新的文献求助20
5秒前
6秒前
奋斗瑶完成签到,获得积分10
7秒前
112发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
郭伟华发布了新的文献求助10
8秒前
Ye发布了新的文献求助10
9秒前
小橘子会发光完成签到,获得积分10
10秒前
10秒前
7sa3o发布了新的文献求助10
10秒前
best发布了新的文献求助10
11秒前
NexusExplorer应助小李博士采纳,获得10
11秒前
13秒前
FY发布了新的文献求助10
14秒前
Dr_Fang完成签到,获得积分10
15秒前
肉苁蓉完成签到,获得积分20
15秒前
jojojojojo发布了新的文献求助10
15秒前
16秒前
16秒前
顾矜应助阿洁采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
鸣笛应助笑点低飞扬采纳,获得10
17秒前
类囊体薄膜完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4609308
求助须知:如何正确求助?哪些是违规求助? 4015576
关于积分的说明 12433275
捐赠科研通 3696869
什么是DOI,文献DOI怎么找? 2038431
邀请新用户注册赠送积分活动 1071464
科研通“疑难数据库(出版商)”最低求助积分说明 955213