Evaluation of Spectral Characteristics of Asphalt Mixtures

级配 沥青 光谱特征 骨料(复合) 环境科学 高光谱成像 遥感 材料科学 吸收(声学) 短波 沥青混凝土 计算机科学 光学 复合材料 地质学 辐射传输 物理 计算机视觉
作者
Vatsal Dharmeshkumar Patel,Abhinay Kumar,Rishikesh Bharti,Rajan Choudhary,Ankush Kumar
出处
期刊:Journal of Materials in Civil Engineering [American Society of Civil Engineers]
卷期号:35 (9) 被引量:1
标识
DOI:10.1061/jmcee7.mteng-15877
摘要

Evaluation of the pavement condition is expensive, time-consuming, and labor-intensive and becomes even more challenging in remote areas. Nondestructive remote-sensing techniques can enable pavement condition assessment over a large areal extent. Remote-sensing sensors, capable of acquiring the emitted and reflected energies of the target with respect to the wavelength, can help in the identification and characterization of various asphalt mixtures prepared at a laboratory or field scale. This study aims at studying the spectral signature of asphalt mixtures with respect to aggregate gradation, binder type, binder concentration, aging, moisture conditions, and distress. In addition, an attempt has been made to identify the correlation between spectral features and asphalt mixture properties utilizing spectral metrics such as the Visible (VIS2) index and Shortwave Infrared (SWIR) index in visible and shortwave infrared regions of the electromagnetic spectrum, respectively. Indian and US specifications were followed for the fabrication and simulation of various states/conditions of asphalt mixtures. It was found from the analysis of spectral signatures that characteristic absorption features present between 1,700 and 2,300 nm can be used to identify different asphalt mixtures with distinct binder types and aggregate gradations. Also, variations in the intensity of these features were detected following various conditioning and distress simulations. Moreover, the statistical analysis indicated that the distressed samples exhibit a higher magnitude of spectral metrics (VIS2/SWIR) compared with the undamaged samples. The spectral characteristics of asphalt mixtures under different material compositions identified in the study offer great potential for pavement surface condition assessment through hyperspectral remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
zzp完成签到,获得积分10
3秒前
4秒前
hxnz2001完成签到,获得积分10
4秒前
杳鸢应助有魅力的雨雪采纳,获得30
4秒前
keyan_zhou应助柏林采纳,获得20
4秒前
YuF完成签到,获得积分10
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
Yifan2024应助科研通管家采纳,获得10
5秒前
怕黑半仙应助科研通管家采纳,获得10
5秒前
6秒前
可爱千兰完成签到,获得积分10
7秒前
8秒前
9秒前
sissiarno应助奥特曼采纳,获得80
9秒前
科研通AI2S应助奥特曼采纳,获得10
9秒前
9秒前
科研通AI2S应助奥特曼采纳,获得10
9秒前
科研通AI2S应助奥特曼采纳,获得10
9秒前
华仔应助奥特曼采纳,获得10
9秒前
科研通AI2S应助奥特曼采纳,获得10
10秒前
科研通AI2S应助奥特曼采纳,获得10
10秒前
LMY1411发布了新的文献求助10
10秒前
联合工程发布了新的文献求助10
11秒前
zhang完成签到 ,获得积分10
16秒前
大气惜寒发布了新的文献求助10
17秒前
木木完成签到 ,获得积分10
18秒前
共享精神应助wuzhizhongbin采纳,获得10
18秒前
所所应助快乐的紫寒采纳,获得10
18秒前
杳鸢应助梦潜采纳,获得10
18秒前
20秒前
20秒前
我是站长才怪完成签到,获得积分0
21秒前
WHB完成签到,获得积分10
25秒前
Caism发布了新的文献求助10
26秒前
26秒前
26秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396549
求助须知:如何正确求助?哪些是违规求助? 3006214
关于积分的说明 8820039
捐赠科研通 2693290
什么是DOI,文献DOI怎么找? 1475247
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675628