已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Global path planning with lifetime constraint model-based offline optimized loading strategy for vehicle fuel cell system

稳健性(进化) 校准 计算机科学 耐久性 模拟 可靠性工程 试验台 汽车工程 工程类 数学 生物化学 数据库 基因 统计 嵌入式系统 化学
作者
Ran Pang,Caizhi Zhang,Xinfa Sheng,Jianwei Li,Tao Li,Dong Hao
出处
期刊:Applied Energy [Elsevier]
卷期号:347: 121401-121401
标识
DOI:10.1016/j.apenergy.2023.121401
摘要

To promote the commercialization of fuel cell vehicles, simultaneously improving the dynamic response and durability of fuel cells under loading conditions are extremely important. Since it can seriously affect the system design and lifespan of the fuel cell system. Unfortunately, fast and reliable loading is a pair of contradictory relationships and it needs an optimal loading slope under variable loading conditions. Therefore, this paper proposes a global path planning (GPP) model by considering lifetime limitations to solve the problem. Firstly, the initial GPP model is established according to the initial power and target power, which is exploited to determine exploratory and calibration tests. Subsequently, the trade-off relationship between fast and reliable loading is addressed by the multi-objective cost function based on the dynamic weight coefficient adjustment method to construct a complete GPP model. Eventually, the optimal slopes solution is calculated by the Dijkstra algorithm. The superiority, robustness, and feasibility of the presented method are successfully verified under a 90 kW fuel cell system test bench. The verification test results show that compared with the reference solution, the utilization of optimal solution loading can significantly reduce the dynamic response time by 22.22% and improve the loading reliability by 40.93%. Moreover, the number of calibration tests determined based on the GPP model is 85.19% less than that of the traditional method. Thus, the proposed loading strategy can load quickly and reliably.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北欧海盗发布了新的文献求助10
刚刚
Yiyi发布了新的文献求助10
2秒前
JamesPei应助炒栗子采纳,获得10
2秒前
neocc123完成签到 ,获得积分10
6秒前
7秒前
Annie完成签到 ,获得积分10
11秒前
NexusExplorer应助liweiDr采纳,获得10
17秒前
研友_VZG7GZ应助隐形的雪碧采纳,获得10
19秒前
eurhfe发布了新的文献求助10
20秒前
江沉晚吟完成签到 ,获得积分10
21秒前
阳光皮带完成签到,获得积分10
23秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得20
24秒前
李健应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
26秒前
27秒前
29秒前
lalalaaaa发布了新的文献求助10
31秒前
犊子完成签到,获得积分10
32秒前
liweiDr发布了新的文献求助10
33秒前
yanhan2009完成签到 ,获得积分10
34秒前
王m完成签到 ,获得积分10
34秒前
35秒前
harmony完成签到 ,获得积分10
36秒前
捏捏我的小短腿完成签到,获得积分10
38秒前
genomed应助清脆的书桃采纳,获得30
38秒前
Singularity应助jiajia采纳,获得20
41秒前
46秒前
vivi完成签到,获得积分10
46秒前
hui_L发布了新的文献求助10
47秒前
48秒前
chiyudoubao完成签到 ,获得积分10
48秒前
49秒前
听风发布了新的文献求助10
49秒前
yoga完成签到 ,获得积分10
49秒前
FashionBoy应助smj采纳,获得10
50秒前
充电宝应助lalalaaaa采纳,获得10
51秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139360
求助须知:如何正确求助?哪些是违规求助? 2790295
关于积分的说明 7794749
捐赠科研通 2446704
什么是DOI,文献DOI怎么找? 1301351
科研通“疑难数据库(出版商)”最低求助积分说明 626134
版权声明 601123