Contrastive Learning Based on Category Matching for Domain Adaptation in Hyperspectral Image Classification

计算机科学 人工智能 判别式 模式识别(心理学) 匹配(统计) 特征(语言学) 光学(聚焦) 上下文图像分类 特征提取 特征学习 特征向量 领域(数学分析) 高光谱成像 计算机视觉 图像(数学) 数学 哲学 数学分析 物理 光学 统计 语言学
作者
Yujie Ning,Jiangtao Peng,Quanyong Liu,Yi Huang,Weiwei Sun,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:27
标识
DOI:10.1109/tgrs.2023.3295357
摘要

Cross-scene hyperspectral image classification (HSIC) is a challenging topic in remote sensing, especially when there are no labels in target domain. Domain adaptation (DA) techniques for cross-scene HSIC aim to label a target domain by associating it with a labeled source domain. Most existing DA methods learn domain-invariant features by reducing feature distance across domains. Recently, contrastive learning has shown excellent performance in computer vision tasks, but there is little or no research on the performance of cross-scene HSIC. Considering that its idea is similar to reducing feature distance, this paper attempts to explore whether contrastive learning can achieve cross-scene HSIC. In this work, an instance-to-instance contrastive learning framework based on category matching (CLCM) is designed. The main idea is to take the category information as the premise in the feature space, regard the source sample as an anchor, and find its positive and negative matching samples across domains. The instance-level discriminative feature embeddings are learned through positive matching pairs attracting each other and negative matching pairs repelling each other. Among them, the target label is a pseudo-label. To further improve the quality of contrastive learning, it is considered to focus on extracting the spectral-spatial features of HSI to more accurately represent semantic information. Simultaneously, high-confidence target samples are screened to update the network. Three DA tasks confirm the effectiveness and feature discriminativeness of CLCM, while also providing new ideas for cross-scene image classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhusihua完成签到,获得积分10
刚刚
1秒前
星辰大海应助qkdwwz采纳,获得10
1秒前
学术小天才完成签到 ,获得积分10
1秒前
lindahuang完成签到,获得积分20
2秒前
孙立军发布了新的文献求助10
3秒前
礐嶨发布了新的文献求助10
3秒前
3秒前
猪猪hero应助耳东采纳,获得10
3秒前
为医消得人憔悴完成签到 ,获得积分10
4秒前
好学的泷泷完成签到 ,获得积分10
4秒前
田様应助Ican采纳,获得10
5秒前
流光发布了新的文献求助10
5秒前
觉皇完成签到,获得积分10
5秒前
燕子发布了新的文献求助100
6秒前
易烊千玺发布了新的文献求助10
6秒前
yexu发布了新的文献求助10
6秒前
9秒前
10秒前
WenHT发布了新的文献求助10
10秒前
充电宝应助了该采纳,获得10
11秒前
yyc发布了新的文献求助10
12秒前
迅速的丑完成签到,获得积分10
12秒前
Jasper应助yexu采纳,获得10
13秒前
qkdwwz发布了新的文献求助10
14秒前
夏宇发布了新的文献求助30
14秒前
orixero应助科研通管家采纳,获得10
14秒前
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
momo完成签到,获得积分20
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
aoi发布了新的文献求助10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
herococa应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141