Contrastive Learning Based on Category Matching for Domain Adaptation in Hyperspectral Image Classification

计算机科学 人工智能 判别式 模式识别(心理学) 匹配(统计) 特征(语言学) 光学(聚焦) 上下文图像分类 特征提取 特征学习 特征向量 领域(数学分析) 高光谱成像 计算机视觉 图像(数学) 数学 数学分析 语言学 统计 哲学 物理 光学
作者
Yujie Ning,Jiangtao Peng,Quanyong Liu,Yi Huang,Weiwei Sun,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:27
标识
DOI:10.1109/tgrs.2023.3295357
摘要

Cross-scene hyperspectral image classification (HSIC) is a challenging topic in remote sensing, especially when there are no labels in target domain. Domain adaptation (DA) techniques for cross-scene HSIC aim to label a target domain by associating it with a labeled source domain. Most existing DA methods learn domain-invariant features by reducing feature distance across domains. Recently, contrastive learning has shown excellent performance in computer vision tasks, but there is little or no research on the performance of cross-scene HSIC. Considering that its idea is similar to reducing feature distance, this paper attempts to explore whether contrastive learning can achieve cross-scene HSIC. In this work, an instance-to-instance contrastive learning framework based on category matching (CLCM) is designed. The main idea is to take the category information as the premise in the feature space, regard the source sample as an anchor, and find its positive and negative matching samples across domains. The instance-level discriminative feature embeddings are learned through positive matching pairs attracting each other and negative matching pairs repelling each other. Among them, the target label is a pseudo-label. To further improve the quality of contrastive learning, it is considered to focus on extracting the spectral-spatial features of HSI to more accurately represent semantic information. Simultaneously, high-confidence target samples are screened to update the network. Three DA tasks confirm the effectiveness and feature discriminativeness of CLCM, while also providing new ideas for cross-scene image classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二一发布了新的文献求助10
1秒前
1秒前
2秒前
SYLH应助邢夏之采纳,获得10
2秒前
可爱邓邓发布了新的文献求助10
2秒前
2秒前
cccJF发布了新的文献求助10
2秒前
小面包发布了新的文献求助10
3秒前
传统的斓完成签到,获得积分10
3秒前
小蘑菇应助yuuta采纳,获得10
4秒前
大方万仇发布了新的文献求助10
4秒前
诚心的老六完成签到 ,获得积分10
5秒前
8秒前
123的321发布了新的文献求助10
8秒前
科目三应助一二一采纳,获得10
9秒前
cccJF完成签到,获得积分10
10秒前
小二郎应助冰凝668采纳,获得10
10秒前
阳光的幻悲完成签到,获得积分10
11秒前
HNNUYanY应助艺玲采纳,获得10
11秒前
11秒前
SciGPT应助陈M雯采纳,获得10
12秒前
13秒前
14秒前
14秒前
丘比特应助study623采纳,获得10
16秒前
18秒前
妞妞完成签到,获得积分20
19秒前
搜集达人应助邢夏之采纳,获得10
19秒前
19秒前
上转换完成签到,获得积分10
20秒前
21秒前
杳鸢应助sumugeng采纳,获得10
21秒前
21秒前
Ava应助滴滴哒哒采纳,获得10
22秒前
Duan完成签到,获得积分10
22秒前
orixero应助魏魏采纳,获得10
22秒前
左白易发布了新的文献求助10
23秒前
24秒前
归尘发布了新的文献求助10
24秒前
陈M雯发布了新的文献求助10
24秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483126
求助须知:如何正确求助?哪些是违规求助? 3072548
关于积分的说明 9127020
捐赠科研通 2764145
什么是DOI,文献DOI怎么找? 1516910
邀请新用户注册赠送积分活动 701852
科研通“疑难数据库(出版商)”最低求助积分说明 700728