A review study on early detection of pancreatic ductal adenocarcinoma using artificial intelligence assisted diagnostic methods

医学 胰腺癌 胰腺导管腺癌 磁共振成像 癌症 分子成像 阶段(地层学) 内镜超声 放射科 病理 内科学 古生物学 生物技术 生物 体内
作者
S. C.,Nayantara Santhi,N. Ramasamy
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:166: 110972-110972
标识
DOI:10.1016/j.ejrad.2023.110972
摘要

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, chemo-refractory and recalcitrant cancer and increases the number of deaths. With just around 1 in 4 individuals having respectable tumours, PDAC is frequently discovered when it is in an advanced stage. Accordingly, ED of PDAC improves patient survival. Subsequently, this paper reviews the early detection of PDAC, initially, the work presented an overview of PDAC. Subsequently, it reviews the molecular biology of pancreatic cancer and the development of molecular biomarkers are represented. This article illustrates the importance of identifying PDCA, the Immune Microenvironment of Pancreatic Cancer. Consequently, in this review, traditional and non-traditional imaging techniques are elucidated, traditional and non-traditional methods like endoscopic ultrasound, Multidetector CT, CT texture analysis, PET-CT, magnetic resonance imaging, diffusion-weighted imaging, secondary signs of pancreatic cancer, and molecular imaging. The use of artificial intelligence in pancreatic cancer, novel MRI techniques, and the future directions of AI for PDAC detection and prognosis is then described. Additionally, the research problem definition and motivation, current trends and developments, state of art of survey, and objective of the research are demonstrated in the review. Consequently, this review concluded that Artificial Intelligence Assisted Diagnostic Methods with MRI images can be proposed in future to improve the specificity and the sensitivity of the work, and to classify malignant PDAC with greater accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Singularity应助孙兆杰采纳,获得10
刚刚
PPP完成签到,获得积分10
1秒前
云瑾应助危机的机器猫采纳,获得10
2秒前
爆米花应助孙宏采纳,获得10
2秒前
今后应助77777采纳,获得10
3秒前
jyl发布了新的文献求助10
4秒前
4秒前
cookie发布了新的文献求助10
5秒前
博雅雅雅雅雅完成签到,获得积分10
5秒前
领导范儿应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
不配.应助科研通管家采纳,获得20
9秒前
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
茜牙牙牙发布了新的文献求助10
9秒前
斯文败类应助哈哈哈哈采纳,获得10
9秒前
11秒前
12秒前
白华苍松发布了新的文献求助10
13秒前
小赵完成签到,获得积分20
13秒前
孙宏发布了新的文献求助10
15秒前
樱桃猴子应助李理采纳,获得10
16秒前
充电宝应助李理采纳,获得10
16秒前
16秒前
77777发布了新的文献求助10
17秒前
太叔文博完成签到,获得积分10
17秒前
斯文败类应助CY采纳,获得30
18秒前
辣椒炒肉发布了新的文献求助10
19秒前
热心市民小黄完成签到,获得积分10
19秒前
20秒前
20秒前
茜牙牙牙完成签到,获得积分20
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260