Dynamic variations of terrestrial ecological drought and propagation analysis with meteorological drought across the mainland China

环境科学 北极涛动 中国大陆 预警系统 气候学 植被(病理学) 中国 生态学 地理 生物 北半球 航空航天工程 考古 病理 工程类 地质学 医学
作者
Fei Wang,Hexin Lai,Yanbin Li,Kai Feng,Qingqing Tian,Wenxian Guo,Weijie Zhang,Danyang Di,Haibo Yang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:896: 165314-165314 被引量:24
标识
DOI:10.1016/j.scitotenv.2023.165314
摘要

Ecological drought is a complex comprehensive process in which the water conditions for normal growth and development of vegetation are changed due to insufficient water supply. In this study, based on the remotely sensed vegetation health index (VHI) and the Famine Early Warning Systems Network Land Data Assimilation System (FLDAS) datasets from 1982 to 2020 in China, the Breaks For Additive Seasons and Trend algorithm (BFAST) was used to analyze the dynamic variations of ecological drought, the standardized regression coefficient method was applied to identify the primary drivers of ecological drought, and the regression analysis was adopted to reveal the coupling effect of atmospheric circulation factors on ecological drought. The results indicated that: (1) the ecological drought showed an overall decreasing trend during 1982–2020 in China, with a negative mutation point that occurred in April 1985; (2) spring drought and summer drought were more likely to occur in the South China, and autumn drought and winter drought were more likely to appear in the Sichuan Basin; (3) the propagation time from meteorological to ecological drought was shorter in summer (2.67 months) and longer in winter (7 months), with average r values of 0.76 and 0.53, respectively; (4) the Trans Polar Index (TPI), Arctic Oscillation (AO) and El Niño-Southern Oscillation (ENSO) had important impacts on ecological drought, which can be used as input factors of drought early warning system to improve the accuracy of drought prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无私的黄豆完成签到 ,获得积分10
3秒前
猫猫雨完成签到,获得积分10
4秒前
和谐的语芙完成签到 ,获得积分10
4秒前
2032jia完成签到,获得积分10
4秒前
所所应助percy采纳,获得20
5秒前
KEyanba完成签到,获得积分10
6秒前
Bruial完成签到,获得积分10
6秒前
nini发布了新的文献求助20
7秒前
星辰大海应助收手吧大哥采纳,获得20
7秒前
斯文败类应助智丹采纳,获得10
8秒前
zhsy完成签到,获得积分10
8秒前
lili完成签到,获得积分10
9秒前
葡萄炖雪梨完成签到 ,获得积分10
9秒前
飘逸的麦片完成签到,获得积分10
12秒前
14秒前
赛因斯完成签到,获得积分10
15秒前
yeye完成签到,获得积分10
16秒前
流觞俊秀完成签到 ,获得积分10
16秒前
浮游应助田国兵采纳,获得10
16秒前
苏紫梗桔发布了新的文献求助10
16秒前
17秒前
淡定的弘发布了新的文献求助10
18秒前
LaTeXer应助和谐的语芙采纳,获得30
18秒前
19秒前
虾米YYY发布了新的文献求助10
21秒前
智丹发布了新的文献求助10
23秒前
24秒前
大河细流完成签到,获得积分10
26秒前
26秒前
曾经青亦发布了新的文献求助10
27秒前
清爽晓凡完成签到 ,获得积分10
27秒前
27秒前
30秒前
植物代谢发布了新的文献求助10
32秒前
32秒前
寒冰寒冰完成签到,获得积分10
32秒前
34秒前
抱抱你发布了新的文献求助10
37秒前
植物代谢完成签到,获得积分10
37秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225537
求助须知:如何正确求助?哪些是违规求助? 4397211
关于积分的说明 13686001
捐赠科研通 4261743
什么是DOI,文献DOI怎么找? 2338660
邀请新用户注册赠送积分活动 1336070
关于科研通互助平台的介绍 1291974