WiAi-ID: Wi-Fi-Based Domain Adaptation for Appearance-Independent Passive Person Identification

计算机科学 鉴定(生物学) 域适应 适应(眼睛) 领域(数学分析) 计算机网络 语音识别 人工智能 数学 植物 生物 分类器(UML) 光学 物理 数学分析
作者
Ying Liang,Wenjie Wu,H. Li,Feng Han,Zhengqi Liu,Pengfei Xu,Xiaoli Lian,Xiaojiang Chen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 1012-1027 被引量:3
标识
DOI:10.1109/jiot.2023.3288767
摘要

Wi-Fi signal-based person identification has become a hot research topic due to the widespread deployment of Wi-Fi devices and the fact that these approaches are noncontact, passive, and privacy-preserving. While the existing related methods and systems have achieved good performance for person identification, they also encounter many significant challenges in practical applications. Due to the propagation properties of Wi-Fi signals, the signal at the receiver will change significantly when the user's appearance changes. This makes single-appearance trained models unusable for cross-appearance recognition tasks. To address this challenge, we propose a deep learning-based framework for appearance-independent identification using Wi-Fi signals (WiAi-ID), the core of which lies in the fact that the domain discriminator and feature extractor are trained together in an adversarial manner, thus forcing the model to extract identity-inherent features independent of human appearance, and introduces a multiscale CNN adaptation module to capture time-span-based features. We collected Wi-Fi signal data of pedestrians with different appearances. The experimental results show that WiAi-ID can effectively eliminate the impact on identification due to pedestrian appearance variations and accordingly outperforms the current state-of-the-art video and wireless signal-based recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
LILING完成签到,获得积分10
2秒前
2秒前
怕孤单的沛儿完成签到,获得积分10
3秒前
present完成签到,获得积分10
5秒前
Labman完成签到,获得积分10
6秒前
6秒前
紫菜完成签到,获得积分10
6秒前
geather发布了新的文献求助10
6秒前
7秒前
7秒前
Ekko发布了新的文献求助10
8秒前
WJY完成签到,获得积分10
10秒前
怕孤独的修杰完成签到 ,获得积分10
10秒前
还行发布了新的文献求助10
11秒前
12秒前
13秒前
力劈华山完成签到,获得积分10
14秒前
15秒前
斯文败类应助谁在说话采纳,获得10
15秒前
15秒前
16秒前
首席医官完成签到,获得积分10
16秒前
16秒前
张雯思完成签到,获得积分10
17秒前
田様应助金郁采纳,获得10
18秒前
结实的寒梦发布了新的文献求助200
18秒前
18秒前
星辰大海应助Ekko采纳,获得10
19秒前
cij123发布了新的文献求助10
20秒前
青山发布了新的文献求助10
21秒前
zzzxh发布了新的文献求助10
22秒前
22秒前
吾中完成签到,获得积分10
22秒前
23秒前
ket完成签到,获得积分10
23秒前
科研通AI5应助温柔的语柔采纳,获得10
23秒前
千凡发布了新的文献求助10
23秒前
hey发布了新的文献求助10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743367
求助须知:如何正确求助?哪些是违规求助? 3285916
关于积分的说明 10048700
捐赠科研通 3002607
什么是DOI,文献DOI怎么找? 1648241
邀请新用户注册赠送积分活动 784589
科研通“疑难数据库(出版商)”最低求助积分说明 750764