计算机科学
变更检测
特征(语言学)
多任务学习
人工智能
背景(考古学)
适应(眼睛)
模式识别(心理学)
遥感
块(置换群论)
任务(项目管理)
计算机视觉
哲学
语言学
物理
几何学
数学
管理
光学
经济
生物
地质学
古生物学
作者
Chunhui Zhao,Yingjie Tang,Shou Feng,Yuanze Fan,Wei Li,Ran Tao,Lifu Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-14
被引量:7
标识
DOI:10.1109/tgrs.2023.3275140
摘要
With the development of remote sensing technology, high-resolution (HR) remote sensing optical images have gradually become the main source of change detection data. Albeit, the change detection for HR remote sensing images still faces challenges: 1) in complex scenes, a region contains a large amount of semantic information, which makes it difficult to accurately locate the boundaries between different semantics in the feature maps and 2) due to the inability to maintain consistent conditions such as light, weather, and other factors when acquiring bitemporal images, confounding factors such as the style of bitemporal data that are not related to change detection can cause detection difficulties. Therefore, a change detection method based on feature interaction and multitask learning (FMCD) is proposed in this article. To improve the ability to detect changes in complex scenes, FMCD models the context information of features through a multilevel feature interaction module, so as to obtain representative features, and to improve the sensitivity of the model to changes, the interaction between two temporal features is realized through the mix attention block (MAB). In addition, to eliminate the influence of weather and other factors, FMCD adopts a multitask learning strategy, takes domain adaptation as an auxiliary task, and maps the features of bitemporal images to the same space through the feature relationship adaptation module (FRAM) and feature distribution adaptation module (FDAM). Experiments on three datasets show that the proposed method is superior to other state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI