High-Resolution Remote Sensing Bitemporal Image Change Detection Based on Feature Interaction and Multitask Learning

计算机科学 变更检测 特征(语言学) 多任务学习 人工智能 背景(考古学) 适应(眼睛) 模式识别(心理学) 遥感 块(置换群论) 任务(项目管理) 计算机视觉 哲学 语言学 物理 几何学 数学 管理 光学 经济 生物 地质学 古生物学
作者
Chunhui Zhao,Yingjie Tang,Shou Feng,Yuanze Fan,Wei Li,Ran Tao,Lifu Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:7
标识
DOI:10.1109/tgrs.2023.3275140
摘要

With the development of remote sensing technology, high-resolution (HR) remote sensing optical images have gradually become the main source of change detection data. Albeit, the change detection for HR remote sensing images still faces challenges: 1) in complex scenes, a region contains a large amount of semantic information, which makes it difficult to accurately locate the boundaries between different semantics in the feature maps and 2) due to the inability to maintain consistent conditions such as light, weather, and other factors when acquiring bitemporal images, confounding factors such as the style of bitemporal data that are not related to change detection can cause detection difficulties. Therefore, a change detection method based on feature interaction and multitask learning (FMCD) is proposed in this article. To improve the ability to detect changes in complex scenes, FMCD models the context information of features through a multilevel feature interaction module, so as to obtain representative features, and to improve the sensitivity of the model to changes, the interaction between two temporal features is realized through the mix attention block (MAB). In addition, to eliminate the influence of weather and other factors, FMCD adopts a multitask learning strategy, takes domain adaptation as an auxiliary task, and maps the features of bitemporal images to the same space through the feature relationship adaptation module (FRAM) and feature distribution adaptation module (FDAM). Experiments on three datasets show that the proposed method is superior to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仙林AK47发布了新的文献求助10
刚刚
小k医生发布了新的文献求助10
刚刚
1秒前
superluckc发布了新的文献求助10
2秒前
3秒前
3秒前
勤劳的雁凡完成签到,获得积分10
4秒前
淡定鸿涛发布了新的文献求助10
5秒前
6秒前
酷波er应助IL空空采纳,获得10
6秒前
7秒前
7秒前
科研通AI2S应助一个大帅哥采纳,获得10
7秒前
shidizai发布了新的文献求助10
7秒前
心台应助热心小松鼠采纳,获得10
7秒前
心台应助热心小松鼠采纳,获得10
8秒前
杳鸢应助热心小松鼠采纳,获得10
8秒前
心台应助热心小松鼠采纳,获得10
8秒前
9秒前
9秒前
桐桐应助ZOEY采纳,获得10
10秒前
plm发布了新的文献求助10
10秒前
goofs发布了新的文献求助10
11秒前
优秀不愁发布了新的文献求助10
11秒前
赘婿应助小纸人采纳,获得10
12秒前
zzx完成签到,获得积分10
12秒前
13秒前
13秒前
真难啊发布了新的文献求助10
13秒前
橘络发布了新的文献求助10
14秒前
顺利的亦绿完成签到 ,获得积分10
14秒前
15秒前
一一应助fayli采纳,获得10
16秒前
ZOEY完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
qiqi0426完成签到,获得积分20
20秒前
存在发布了新的文献求助10
21秒前
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228806
求助须知:如何正确求助?哪些是违规求助? 2876566
关于积分的说明 8195759
捐赠科研通 2543848
什么是DOI,文献DOI怎么找? 1374072
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621509