牛血清白蛋白
壳聚糖
PEG比率
化学
纳米颗粒
核化学
药物输送
猝灭(荧光)
毒品携带者
荧光
色谱法
有机化学
材料科学
纳米技术
物理
财务
经济
量子力学
作者
Nafisur Rahman,Nabila Khalil
标识
DOI:10.1016/j.jddst.2023.104738
摘要
This study details the synthesis, characterization and protein binding efficiency of chitosan nanoparticles. Chitosan (CS) supported 1-phenylisatin (1-ph) loaded CS nanoparticles (NPs) (1-ph@CH-PEG/TPP) were synthesized utilizing the inotropic gelation method. The optimization of the composition of CSNPs was done using BBD. These formed CSNPs were then characterized with FTIR, SEM, TEM, TGA-DTA and XRD analyses. The addition of PEG increased the loading efficiency of CSNPs from 45.96 to 94.41% for bare nanoparticles to PEG encapsulated NPs, respectively. The drug encapsulated nanoparticles interacted with the universal protein BSA. The fluorescence quenching results showed that the system statically quenched its fluorescence. For BSA-1-ph and BSA-1-ph@CH-PEG/TPP systems, Ksv values decrease with increasing temperature (283–310 K; 6.15 × 104 L mol−1 to 1.19 × 104 L mol−1 for BSA-1-ph and from 2.52 × 104 L mol−1 to 1.09 × 104 L mol−1 for BSA-1-ph@CH-PEG/TPP). The binding calculations revealed that the 1-ph@CH-PEG/TPP system showed a decrease in its binding strength to the protein molecule as compared with the pure 1-ph system. This decrease in binding increases the therapeutic effect of the drug molecule and hence the produced CSNPs can be efficiently used as a potential drug delivery system. The UV, synchronous and 3D analysis confirmed the structural alteration of serum after binding. The effect of different metal ions on the binding profile of the 1-ph-BSA system was also investigated. Molecular docking results further validated the experimental finding.
科研通智能强力驱动
Strongly Powered by AbleSci AI