Improved Whale Optimization Algorithm Based on Fusion Gravity Balance

水准点(测量) 惯性 人口 数学优化 理论(学习稳定性) 算法 局部最优 粒子群优化 计算机科学 跳跃 数学 机器学习 物理 社会学 人口学 经典力学 地理 量子力学 大地测量学
作者
Cheng Ouyang,Yongkang Gong,Donglin Zhu,Changjun Zhou
出处
期刊:Axioms [MDPI AG]
卷期号:12 (7): 664-664
标识
DOI:10.3390/axioms12070664
摘要

In order to improve the shortcomings of the whale optimization algorithm (WOA) in dealing with optimization problems, and further improve the accuracy and stability of the WOA, we propose an enhanced regenerative whale optimization algorithm based on gravity balance (GWOA). In the initial stage, the nonlinear time-varying factor and inertia weight strategy are introduced to change the foraging trajectory and exploration range, which improves the search efficiency and diversity. In the random walk stage and the encircling stage, the excellent solutions are protected by the gravitational balance strategy to ensure the high quality of solution. In order to prevent the algorithm from rapidly converging to the local extreme value and failing to jump out, a regeneration mechanism is introduced to help the whale population escape from the local optimal value, and to help the whale population find a better solution within the search interval through reasonable position updating. Compared with six algorithms on 16 benchmark functions, the contribution values of each strategy and Wilcoxon rank sum test show that GWOA performs well in 30-dimensional and 100-dimensional test functions and in practical applications. In general, GWOA has better optimization ability. In each algorithm contribution experiment, compared with the WOA, the indexes of the strategies added in each stage were improved. Finally, GWOA is applied to robot path planning and three classical engineering problems, and the stability and applicability of GWOA are verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bingbingsha发布了新的文献求助20
1秒前
所所应助韬气包采纳,获得10
2秒前
文子完成签到,获得积分10
2秒前
3秒前
应对穿衣打扮完成签到,获得积分10
3秒前
4秒前
含蓄橘子发布了新的文献求助30
4秒前
贪玩千儿应助Soche采纳,获得10
6秒前
杨gj完成签到,获得积分10
6秒前
7秒前
汉堡包应助勤劳的忆寒采纳,获得30
9秒前
jkaaa完成签到,获得积分10
9秒前
杨gj发布了新的文献求助10
10秒前
bai发布了新的文献求助10
10秒前
12秒前
12秒前
王111完成签到,获得积分10
13秒前
静静子发布了新的文献求助10
14秒前
壮观千筹完成签到,获得积分20
16秒前
坚强的多嘴小蘑菇完成签到,获得积分10
18秒前
18秒前
19秒前
妖妖完成签到,获得积分10
19秒前
Akim应助壮观千筹采纳,获得10
19秒前
静静子完成签到,获得积分10
22秒前
23秒前
用心听发布了新的文献求助10
24秒前
陈柚子完成签到,获得积分10
25秒前
学术乞丐感谢好心人完成签到 ,获得积分10
26秒前
26秒前
26秒前
JYX完成签到 ,获得积分10
28秒前
刘刘刘完成签到 ,获得积分10
29秒前
Qinqinzi发布了新的文献求助10
30秒前
31秒前
田様应助受伤的碧曼采纳,获得10
31秒前
wang发布了新的文献求助10
31秒前
apple9515完成签到 ,获得积分10
33秒前
34秒前
Amadeus发布了新的文献求助30
34秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085875
求助须知:如何正确求助?哪些是违规求助? 2738737
关于积分的说明 7551604
捐赠科研通 2388581
什么是DOI,文献DOI怎么找? 1266613
科研通“疑难数据库(出版商)”最低求助积分说明 613527
版权声明 598591