Prediction of Protein‐Ligand Binding Affinity by a Hybrid Quantum‐Classical Deep Learning Algorithm

深度学习 人工智能 计算机科学 算法 量子 一般化 卷积神经网络 机器学习 数学 物理 量子力学 数学分析
作者
Lina Dong,Yulin Li,Dandan Liu,Ye Ji,Bo Hu,Shuai Shi,Fangyan Zhang,Junjie Hu,Kun Qian,Xian‐Min Jin,Binju Wang
出处
期刊:Advanced quantum technologies [Wiley]
卷期号:6 (9) 被引量:6
标识
DOI:10.1002/qute.202300107
摘要

Abstract Rapid and accurate prediction of protein‐ligand binding affinity plays a vital role in high‐throughput drug screening. With the development of deep learning, increasingly accurate prediction models have been established. Deep learning may have ushered in an era of quantization, but the practical use of this theory for protein‐ligand binding affinity is still infrequent. Here, the introduction of the quantum algorithm into classical deep learning is described, which enables it to reliably predict protein‐ligand binding affinity using simple sequence information. Based on different deep learning models, including graph neural networks (GNN) and convolutional neural networks (CNN), corresponding quantum hybrid deep learning models have been constructed and compared to the classical models. This study has shown that the quantum algorithm can achieve considerable accuracy and good generalization, and show potential to balance between accuracy and generalization, although the parameters used in the model have been remarkably reduced. These models based on quantum hybrid deep learning (QDL) show robust predictions on four benchmark datasets, and exhibit the practical application power in drug screening for targets related to human liver cirrhosis. This work highlights the potential of the hybrid quantum deep learning algorithm in solving complex problems in bioinformatics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qilifei完成签到,获得积分10
刚刚
祝yu完成签到 ,获得积分10
刚刚
研友_VZG7GZ应助嘻嘻采纳,获得10
刚刚
平凡中的限量版完成签到,获得积分10
刚刚
不吃香菜完成签到,获得积分10
刚刚
pokemeow完成签到,获得积分10
1秒前
aki完成签到 ,获得积分10
1秒前
欧哈纳完成签到 ,获得积分10
1秒前
1秒前
mxl完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
wangyan完成签到,获得积分10
2秒前
打工人一枚完成签到,获得积分10
2秒前
Shirley完成签到,获得积分10
3秒前
小青虫完成签到,获得积分10
4秒前
hi_zhanghao完成签到,获得积分0
4秒前
5秒前
mm_zxh完成签到,获得积分10
5秒前
包包琪完成签到 ,获得积分10
5秒前
宋相甫完成签到,获得积分10
5秒前
6秒前
xiaosengliufa完成签到,获得积分10
6秒前
英姑应助mxl采纳,获得10
6秒前
kaititongg关注了科研通微信公众号
6秒前
7秒前
藜誌发布了新的文献求助10
7秒前
7秒前
tanwenbin完成签到,获得积分10
7秒前
Qi36完成签到 ,获得积分10
7秒前
木子李发布了新的文献求助30
8秒前
1459完成签到,获得积分10
8秒前
jou完成签到,获得积分10
8秒前
甜瓜瓜发布了新的文献求助10
9秒前
金金完成签到,获得积分10
9秒前
潜伏完成签到 ,获得积分10
10秒前
帅气惜霜完成签到,获得积分10
10秒前
Ziyi_Xu完成签到,获得积分10
10秒前
愉快的雍完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349