Prediction of Protein‐Ligand Binding Affinity by a Hybrid Quantum‐Classical Deep Learning Algorithm

深度学习 人工智能 计算机科学 算法 量子 一般化 卷积神经网络 机器学习 数学 物理 数学分析 量子力学
作者
Lina Dong,Yulin Li,Dandan Liu,Ye Ji,Bo Hu,Shuai Shi,Fangyan Zhang,Junjie Hu,Kun Qian,Xian‐Min Jin,Binju Wang
出处
期刊:Advanced quantum technologies [Wiley]
卷期号:6 (9) 被引量:6
标识
DOI:10.1002/qute.202300107
摘要

Abstract Rapid and accurate prediction of protein‐ligand binding affinity plays a vital role in high‐throughput drug screening. With the development of deep learning, increasingly accurate prediction models have been established. Deep learning may have ushered in an era of quantization, but the practical use of this theory for protein‐ligand binding affinity is still infrequent. Here, the introduction of the quantum algorithm into classical deep learning is described, which enables it to reliably predict protein‐ligand binding affinity using simple sequence information. Based on different deep learning models, including graph neural networks (GNN) and convolutional neural networks (CNN), corresponding quantum hybrid deep learning models have been constructed and compared to the classical models. This study has shown that the quantum algorithm can achieve considerable accuracy and good generalization, and show potential to balance between accuracy and generalization, although the parameters used in the model have been remarkably reduced. These models based on quantum hybrid deep learning (QDL) show robust predictions on four benchmark datasets, and exhibit the practical application power in drug screening for targets related to human liver cirrhosis. This work highlights the potential of the hybrid quantum deep learning algorithm in solving complex problems in bioinformatics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KevinSun完成签到,获得积分10
1秒前
1秒前
小马完成签到,获得积分10
1秒前
DODO完成签到,获得积分10
1秒前
完美世界应助苏某坡采纳,获得10
1秒前
xx完成签到 ,获得积分10
1秒前
小马甲应助高大语蕊采纳,获得10
2秒前
2秒前
又夏完成签到,获得积分10
2秒前
yllcjl完成签到,获得积分10
2秒前
3秒前
x跳完成签到,获得积分10
3秒前
英俊鼠标完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
脑洞疼应助王佳豪采纳,获得10
4秒前
4秒前
5秒前
小二郎应助亚秋采纳,获得10
5秒前
Wonder完成签到,获得积分10
6秒前
科研通AI2S应助y943采纳,获得10
6秒前
6秒前
斯文败类应助BYN采纳,获得10
6秒前
可靠诗筠完成签到 ,获得积分10
6秒前
6秒前
旺旺完成签到,获得积分10
6秒前
Silentjj84发布了新的文献求助10
7秒前
7秒前
宽宽完成签到,获得积分10
7秒前
乳酸菌完成签到,获得积分10
7秒前
yx发布了新的文献求助10
7秒前
嗝嗝完成签到,获得积分10
7秒前
cdragon完成签到,获得积分10
7秒前
陶醉紫菜发布了新的文献求助10
8秒前
莉莉发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
Giroro_roro完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651881
求助须知:如何正确求助?哪些是违规求助? 4786125
关于积分的说明 15056850
捐赠科研通 4810523
什么是DOI,文献DOI怎么找? 2573252
邀请新用户注册赠送积分活动 1529137
关于科研通互助平台的介绍 1488090