清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting

期限(时间) 一般化 离群值 风速 异常检测 计算机科学 人工智能 机器学习 气象学 数学 地理 物理 数学分析 量子力学
作者
Wenlong Fu,Yuchen Fu,Bailing Li,Hairong Zhang,Xuanrui Zhang,Jiarui Liu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:348: 121587-121587 被引量:19
标识
DOI:10.1016/j.apenergy.2023.121587
摘要

Precise wind speed forecasting contributes to wind power consumption and power grid schedule as well as promotes the implementation of global carbon neutrality policy. However, in existing research, the negative impact of outliers on forecasting models is ignored and the inherent shortcomings of the single predictors have not been taken seriously. Moreover, the intrinsic parameters of predictors are set by manual and empirical methods in some research, leading to difficulties in achieving optimal forecasting performance. To solve the shortcomings of existing research, a multi-step short-term wind speed forecasting framework is proposed by incorporating boxplot-medcouple (MC), variational mode decomposition (VMD), phase space reconstruction (PSR), weight-based stacked generalization with enhanced differential evolution slime mold algorithm (DESMA). Firstly, boxplot-MC is employed to achieve outlier detection and correction for preprocessing original wind speed data by analyzing values and trends. Then, the modified data is further adaptively decomposed into multiple subsequences by VMD, after which each subsequence is constructed into feature matrices through PSR. Subsequently, weight-based multi-model fusion strategy in layer-1 of stacked generalization is proposed to integrate the predicting values acquired by three primary learners, of which the weight coefficients are calculated with the error between actual values and predicting values. After that, kernel extreme learning machine (KELM) in layer-2 of stacked generalization is applied to predict the fusion result to obtain forecasting value corresponding to each subsequence. Meanwhile, an enhanced DESMA based on slime mold algorithm (SMA) and differential evolution (DE) is proposed to calibrate the parameters of KELM. Eventually, the final wind speed forecasting results are attained by summing the prediction values of all subsequences. Furthermore, comparative experiments from different aspects are undertaken on real datasets to ascertain the availability of the proposed framework. The experimental results are clarified as follows: (1) outlier detection and correction employing boxplot-MC is dedicated to analyzing values and trends effectively, with which the negative impact of outliers can be weakened while retaining valid data significantly; (2) VMD can prominently reduce the non-smoothness and volatility of wind speed data; (3) weight-based stacked generalization is conducive to exploiting the advantages of individual primary learners, contributing to compensating for instability; (4) DESMA enhances prediction accuracy by optimizing the parameters of KELM. Additionally, the code has been made available at https://github.com/fyc233/a-multi-step-short-term-wind-speed-forecasting-framework.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shuo完成签到,获得积分10
11秒前
24秒前
Akim应助追风采纳,获得10
25秒前
细心的如天完成签到 ,获得积分10
38秒前
39秒前
1分钟前
1分钟前
XD824发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Dreamhappy完成签到,获得积分10
1分钟前
无限晓蓝完成签到 ,获得积分10
1分钟前
1分钟前
John完成签到 ,获得积分10
1分钟前
LINDENG2004完成签到 ,获得积分10
1分钟前
不安青牛应助雪山飞龙采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
wol007完成签到 ,获得积分10
2分钟前
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
雪山飞龙完成签到,获得积分10
2分钟前
2分钟前
2分钟前
11111发布了新的文献求助10
2分钟前
11111完成签到,获得积分10
2分钟前
WJZ完成签到 ,获得积分10
2分钟前
上官若男应助ZHANGZHANG采纳,获得10
2分钟前
赘婿应助飞翔的企鹅采纳,获得10
3分钟前
3分钟前
XD824完成签到,获得积分10
3分钟前
XD824发布了新的文献求助10
3分钟前
3分钟前
3分钟前
ZHANGZHANG发布了新的文献求助10
3分钟前
lyj完成签到 ,获得积分10
3分钟前
V_I_G完成签到 ,获得积分10
3分钟前
ZJ完成签到,获得积分10
3分钟前
糊涂的青烟完成签到 ,获得积分10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098