已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting

期限(时间) 一般化 离群值 风速 异常检测 计算机科学 人工智能 机器学习 气象学 数学 地理 物理 数学分析 量子力学
作者
Wenlong Fu,Yuchen Fu,Bailing Li,Hairong Zhang,Xuanrui Zhang,Jiarui Liu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:348: 121587-121587 被引量:19
标识
DOI:10.1016/j.apenergy.2023.121587
摘要

Precise wind speed forecasting contributes to wind power consumption and power grid schedule as well as promotes the implementation of global carbon neutrality policy. However, in existing research, the negative impact of outliers on forecasting models is ignored and the inherent shortcomings of the single predictors have not been taken seriously. Moreover, the intrinsic parameters of predictors are set by manual and empirical methods in some research, leading to difficulties in achieving optimal forecasting performance. To solve the shortcomings of existing research, a multi-step short-term wind speed forecasting framework is proposed by incorporating boxplot-medcouple (MC), variational mode decomposition (VMD), phase space reconstruction (PSR), weight-based stacked generalization with enhanced differential evolution slime mold algorithm (DESMA). Firstly, boxplot-MC is employed to achieve outlier detection and correction for preprocessing original wind speed data by analyzing values and trends. Then, the modified data is further adaptively decomposed into multiple subsequences by VMD, after which each subsequence is constructed into feature matrices through PSR. Subsequently, weight-based multi-model fusion strategy in layer-1 of stacked generalization is proposed to integrate the predicting values acquired by three primary learners, of which the weight coefficients are calculated with the error between actual values and predicting values. After that, kernel extreme learning machine (KELM) in layer-2 of stacked generalization is applied to predict the fusion result to obtain forecasting value corresponding to each subsequence. Meanwhile, an enhanced DESMA based on slime mold algorithm (SMA) and differential evolution (DE) is proposed to calibrate the parameters of KELM. Eventually, the final wind speed forecasting results are attained by summing the prediction values of all subsequences. Furthermore, comparative experiments from different aspects are undertaken on real datasets to ascertain the availability of the proposed framework. The experimental results are clarified as follows: (1) outlier detection and correction employing boxplot-MC is dedicated to analyzing values and trends effectively, with which the negative impact of outliers can be weakened while retaining valid data significantly; (2) VMD can prominently reduce the non-smoothness and volatility of wind speed data; (3) weight-based stacked generalization is conducive to exploiting the advantages of individual primary learners, contributing to compensating for instability; (4) DESMA enhances prediction accuracy by optimizing the parameters of KELM. Additionally, the code has been made available at https://github.com/fyc233/a-multi-step-short-term-wind-speed-forecasting-framework.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
X519664508完成签到,获得积分0
刚刚
2秒前
缥缈的芷卉完成签到 ,获得积分10
2秒前
4秒前
郑方形发布了新的文献求助10
5秒前
科研通AI2S应助虚幻初之采纳,获得10
6秒前
8秒前
欢呼败完成签到 ,获得积分10
12秒前
研友_VZG7GZ应助binbin采纳,获得10
12秒前
沉醉的中国钵完成签到 ,获得积分10
13秒前
潇湘完成签到 ,获得积分10
14秒前
15秒前
星辰大海应助吡咯爱成环采纳,获得50
15秒前
16秒前
牛牛眉目发布了新的文献求助10
19秒前
爆米花应助靖柔采纳,获得10
19秒前
周美言发布了新的文献求助10
22秒前
谦让寒云完成签到 ,获得积分10
23秒前
24秒前
ZYY完成签到,获得积分10
25秒前
科研通AI2S应助虚幻初之采纳,获得10
26秒前
wcy完成签到 ,获得积分10
27秒前
摆烂小子完成签到,获得积分10
30秒前
丘比特应助congcong采纳,获得10
37秒前
38秒前
整齐凝竹完成签到 ,获得积分10
41秒前
蜜呐发布了新的文献求助10
42秒前
42秒前
AZN完成签到 ,获得积分10
44秒前
44秒前
xsy完成签到 ,获得积分10
45秒前
充电宝应助牛牛眉目采纳,获得10
46秒前
binbin发布了新的文献求助10
48秒前
年轻馒头应助蜜呐采纳,获得10
50秒前
医学牲完成签到,获得积分10
55秒前
科研小白完成签到,获得积分10
57秒前
1分钟前
1分钟前
念安发布了新的文献求助10
1分钟前
吡咯爱成环完成签到,获得积分0
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510727
关于积分的说明 11154880
捐赠科研通 3245180
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168