QoS Prediction and Adversarial Attack Protection for Distributed Services Under DLaaS

计算机科学 对抗制 稳健性(进化) 服务质量 深度学习 人工智能 机器学习 新颖性 分布式计算 推论 计算机安全 数据挖掘 计算机网络 生物化学 化学 哲学 神学 基因
作者
Wei Liang,Yuhui Li,Jianlong Xu,Zheng Qin,Dafang Zhang,Kuan‐Ching Li
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 669-682 被引量:25
标识
DOI:10.1109/tc.2021.3077738
摘要

Deep-Learning-as-a-service (DLaaS) has received increasing attention due to its novelty as a diagram for deploying deep learning techniques. However, DLaaS faces performance and security issues that urgently need to be addressed. Given the limited computation resources and concern of benefits, Quality-of-Service (QoS) metrics should be revised to optimize the performance and reliability of distributed DLaaS systems. New users and services dynamically and continuously join and leave such a system, resulting in cold start issues, and additionally, the increasing demand for robust network connections requires the model to evaluate the uncertainty. To address such performance problems, we propose in this article a deep learning-based model called embedding enhanced probability neural network, in which information is extracted from inside the graph structure and then estimated the mean and variance values for the prediction distribution. The adversarial attack is a severe threat to model security under DLaaS. Due to such, the service recommender system's vulnerability is tackled, and adversarial training with uncertainty-aware loss to protect the model in noisy and adversarial environments is investigated and proposed. Extensive experiments on a large-scale real-world QoS dataset are conducted, and comprehensive analysis verifies the robustness and effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研小飞猪采纳,获得10
刚刚
彳亍发布了新的文献求助10
刚刚
由由发布了新的文献求助10
1秒前
客官们帮帮忙完成签到,获得积分10
3秒前
3秒前
da发布了新的文献求助10
3秒前
3秒前
kylucky发布了新的文献求助10
4秒前
6秒前
8秒前
山楂发布了新的文献求助10
8秒前
欣喜靖发布了新的文献求助10
10秒前
12秒前
satuo完成签到,获得积分10
14秒前
大海发布了新的文献求助10
15秒前
15秒前
kylucky完成签到,获得积分10
15秒前
tannie完成签到 ,获得积分10
16秒前
18秒前
19秒前
obito发布了新的文献求助10
19秒前
19秒前
张小科完成签到,获得积分10
19秒前
斯文败类应助思维隋采纳,获得10
20秒前
夏蓉完成签到,获得积分10
21秒前
a_jumper完成签到,获得积分10
22秒前
zisu发布了新的文献求助10
22秒前
斯文败类应助waoller1采纳,获得10
22秒前
23秒前
香蕉觅云应助waoller1采纳,获得10
23秒前
FashionBoy应助waoller1采纳,获得10
23秒前
在水一方应助waoller1采纳,获得10
23秒前
打打应助waoller1采纳,获得10
23秒前
天天快乐应助waoller1采纳,获得10
23秒前
脑洞疼应助waoller1采纳,获得10
23秒前
小蘑菇应助waoller1采纳,获得10
23秒前
猪猪hero应助waoller1采纳,获得10
23秒前
23秒前
vividkingking完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144