QoS Prediction and Adversarial Attack Protection for Distributed Services Under DLaaS

计算机科学 对抗制 稳健性(进化) 服务质量 深度学习 人工智能 机器学习 新颖性 分布式计算 推论 计算机安全 数据挖掘 计算机网络 生物化学 化学 哲学 神学 基因
作者
Wei Liang,Yuhui Li,Jianlong Xu,Zheng Qin,Dafang Zhang,Kuan‐Ching Li
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 669-682 被引量:25
标识
DOI:10.1109/tc.2021.3077738
摘要

Deep-Learning-as-a-service (DLaaS) has received increasing attention due to its novelty as a diagram for deploying deep learning techniques. However, DLaaS faces performance and security issues that urgently need to be addressed. Given the limited computation resources and concern of benefits, Quality-of-Service (QoS) metrics should be revised to optimize the performance and reliability of distributed DLaaS systems. New users and services dynamically and continuously join and leave such a system, resulting in cold start issues, and additionally, the increasing demand for robust network connections requires the model to evaluate the uncertainty. To address such performance problems, we propose in this article a deep learning-based model called embedding enhanced probability neural network, in which information is extracted from inside the graph structure and then estimated the mean and variance values for the prediction distribution. The adversarial attack is a severe threat to model security under DLaaS. Due to such, the service recommender system's vulnerability is tackled, and adversarial training with uncertainty-aware loss to protect the model in noisy and adversarial environments is investigated and proposed. Extensive experiments on a large-scale real-world QoS dataset are conducted, and comprehensive analysis verifies the robustness and effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lod完成签到,获得积分10
刚刚
科研通AI2S应助stargazor采纳,获得10
2秒前
言文言完成签到,获得积分10
3秒前
daixan89完成签到,获得积分10
3秒前
千桑客完成签到,获得积分10
6秒前
路路完成签到 ,获得积分10
8秒前
伍子丐的猫完成签到,获得积分10
11秒前
共渡完成签到,获得积分10
12秒前
陈荣完成签到 ,获得积分10
14秒前
一只蓉馍馍完成签到,获得积分10
15秒前
Akim应助Raymond采纳,获得10
15秒前
缓慢雅青完成签到 ,获得积分10
17秒前
赘婿应助Longy采纳,获得10
18秒前
小紫完成签到 ,获得积分10
18秒前
加油完成签到,获得积分10
19秒前
小新完成签到 ,获得积分10
21秒前
超帅连虎完成签到,获得积分10
23秒前
nav完成签到 ,获得积分10
23秒前
袁翰将军完成签到 ,获得积分10
25秒前
Cynthia完成签到 ,获得积分10
29秒前
skycool完成签到,获得积分10
31秒前
凯撒的归凯撒完成签到 ,获得积分10
32秒前
iehaoang完成签到 ,获得积分10
33秒前
皮皮虾完成签到,获得积分10
35秒前
淞33完成签到 ,获得积分10
35秒前
木棉完成签到,获得积分10
37秒前
ty完成签到,获得积分10
42秒前
李友健完成签到 ,获得积分10
43秒前
46秒前
月光完成签到,获得积分10
47秒前
Lucas应助zhangzhisenn采纳,获得30
47秒前
阿湫完成签到,获得积分10
47秒前
49秒前
CO2完成签到,获得积分10
49秒前
51秒前
明月清风完成签到,获得积分10
51秒前
CodeCraft应助Li采纳,获得10
52秒前
keroro完成签到,获得积分10
53秒前
daishuheng完成签到 ,获得积分10
54秒前
55秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339197
求助须知:如何正确求助?哪些是违规求助? 2967064
关于积分的说明 8628229
捐赠科研通 2646594
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180