QoS Prediction and Adversarial Attack Protection for Distributed Services Under DLaaS

计算机科学 对抗制 稳健性(进化) 服务质量 深度学习 人工智能 机器学习 新颖性 分布式计算 推论 计算机安全 数据挖掘 计算机网络 生物化学 化学 哲学 神学 基因
作者
Wei Liang,Yuhui Li,Jianlong Xu,Zheng Qin,Dafang Zhang,Kuan‐Ching Li
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 669-682 被引量:25
标识
DOI:10.1109/tc.2021.3077738
摘要

Deep-Learning-as-a-service (DLaaS) has received increasing attention due to its novelty as a diagram for deploying deep learning techniques. However, DLaaS faces performance and security issues that urgently need to be addressed. Given the limited computation resources and concern of benefits, Quality-of-Service (QoS) metrics should be revised to optimize the performance and reliability of distributed DLaaS systems. New users and services dynamically and continuously join and leave such a system, resulting in cold start issues, and additionally, the increasing demand for robust network connections requires the model to evaluate the uncertainty. To address such performance problems, we propose in this article a deep learning-based model called embedding enhanced probability neural network, in which information is extracted from inside the graph structure and then estimated the mean and variance values for the prediction distribution. The adversarial attack is a severe threat to model security under DLaaS. Due to such, the service recommender system's vulnerability is tackled, and adversarial training with uncertainty-aware loss to protect the model in noisy and adversarial environments is investigated and proposed. Extensive experiments on a large-scale real-world QoS dataset are conducted, and comprehensive analysis verifies the robustness and effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppyyg完成签到,获得积分10
刚刚
刚刚
BowieHuang应助ru采纳,获得10
刚刚
纳米完成签到,获得积分10
1秒前
香蕉觅云应助林琳采纳,获得10
1秒前
不敢自称科研人完成签到,获得积分10
2秒前
2秒前
快乐寄风发布了新的文献求助10
5秒前
小二郎应助NPC采纳,获得10
5秒前
gone完成签到,获得积分10
6秒前
7秒前
害羞的振家完成签到,获得积分10
7秒前
可悲的科研狗完成签到,获得积分10
8秒前
pcm完成签到 ,获得积分10
8秒前
无花果应助王小敏敏儿采纳,获得10
8秒前
8秒前
所所应助看文献的韩章浅采纳,获得10
9秒前
10秒前
11秒前
nana发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
FashionBoy应助sff采纳,获得10
15秒前
16秒前
17秒前
Qiao发布了新的文献求助10
17秒前
蓝橙完成签到,获得积分10
18秒前
CodeCraft应助qq158014169采纳,获得10
18秒前
小化发布了新的文献求助10
19秒前
领导范儿应助灿灿采纳,获得30
20秒前
Mic应助ning采纳,获得10
20秒前
20秒前
21秒前
无私鹰完成签到,获得积分10
21秒前
充电宝应助nana采纳,获得10
21秒前
21秒前
深情安青应助清脆映梦采纳,获得10
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487