QoS Prediction and Adversarial Attack Protection for Distributed Services Under DLaaS

计算机科学 对抗制 稳健性(进化) 服务质量 深度学习 人工智能 机器学习 新颖性 分布式计算 推论 计算机安全 数据挖掘 计算机网络 生物化学 化学 哲学 神学 基因
作者
Wei Liang,Yuhui Li,Jianlong Xu,Zheng Qin,Dafang Zhang,Kuan‐Ching Li
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 669-682 被引量:25
标识
DOI:10.1109/tc.2021.3077738
摘要

Deep-Learning-as-a-service (DLaaS) has received increasing attention due to its novelty as a diagram for deploying deep learning techniques. However, DLaaS faces performance and security issues that urgently need to be addressed. Given the limited computation resources and concern of benefits, Quality-of-Service (QoS) metrics should be revised to optimize the performance and reliability of distributed DLaaS systems. New users and services dynamically and continuously join and leave such a system, resulting in cold start issues, and additionally, the increasing demand for robust network connections requires the model to evaluate the uncertainty. To address such performance problems, we propose in this article a deep learning-based model called embedding enhanced probability neural network, in which information is extracted from inside the graph structure and then estimated the mean and variance values for the prediction distribution. The adversarial attack is a severe threat to model security under DLaaS. Due to such, the service recommender system's vulnerability is tackled, and adversarial training with uncertainty-aware loss to protect the model in noisy and adversarial environments is investigated and proposed. Extensive experiments on a large-scale real-world QoS dataset are conducted, and comprehensive analysis verifies the robustness and effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
dild完成签到,获得积分10
4秒前
清枫发布了新的文献求助10
8秒前
李想完成签到,获得积分10
8秒前
彭于晏应助不喝牛奶的猫采纳,获得10
9秒前
9秒前
之星君完成签到,获得积分10
11秒前
13秒前
14秒前
浮游应助彪壮的雪晴采纳,获得10
15秒前
易晨曦完成签到 ,获得积分10
16秒前
16秒前
17秒前
打打应助endlessloop采纳,获得10
17秒前
无辜南晴发布了新的文献求助10
18秒前
19秒前
风息发布了新的文献求助10
20秒前
无情灯泡发布了新的文献求助10
20秒前
杜不腾发布了新的文献求助10
21秒前
念白发布了新的文献求助10
23秒前
科研通AI5应助jeesy采纳,获得10
25秒前
25秒前
25秒前
25秒前
谦让的博完成签到,获得积分10
25秒前
27秒前
APTACH完成签到,获得积分10
27秒前
27秒前
英吉利25发布了新的文献求助10
28秒前
29秒前
juphen2完成签到,获得积分10
32秒前
李健的小迷弟应助念白采纳,获得10
34秒前
爆米花应助大方研究生采纳,获得10
37秒前
酷波er应助清枫采纳,获得10
38秒前
40秒前
新月完成签到 ,获得积分10
40秒前
完美世界应助小冯采纳,获得10
40秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5217962
求助须知:如何正确求助?哪些是违规求助? 4392247
关于积分的说明 13674920
捐赠科研通 4254581
什么是DOI,文献DOI怎么找? 2334523
邀请新用户注册赠送积分活动 1332187
关于科研通互助平台的介绍 1286219