Lung tumor microphysiological system with 3D endothelium to evaluate modulators of T-cell migration

趋化性 间质细胞 癌症研究 血管生成 内皮 免疫疗法 T细胞 细胞生物学 渗透(HVAC) 免疫学 肿瘤微环境 医学 生物 免疫系统 受体 内科学 物理 热力学
作者
Katrina M. Wisdom
出处
期刊:Alternatives to animal experimentation [ALTEX Edition]
被引量:8
标识
DOI:10.14573/altex.2208121
摘要

Lung cancer is a leading cause of death worldwide, with only a fraction of patients responding to immunotherapy. The correlation between increased T-cell infiltration and positive patient outcomes has motivated the search for therapeutics promoting T-cell infiltration. While transwell and spheroid platforms have been employed, these models lack flow and endothelial barriers, and cannot faithfully model T-cell adhesion, extravasation, and migration through 3D tissue. Presented here is a 3D chemotaxis assay, in a lung tumor-on-chip model with 3D endothelium (LToC-Endo), to address this need. The described assay consists of a HUVEC-derived vascular tubule cultured under rocking flow, through which T-cells are added; a collagenous stromal barrier, through which T-cells migrate; and a chemoattractant/tumor (HCC0827 or NCI-H520) compartment. Here, activated T-cells extravasate and migrate in response to gradients of rhCXCL11 and rhCXCL12. Adopting a T-cell activation protocol with a rest period enables proliferative burst prior to introducing T-cells into chips and enhances assay sensitivity. In addition, incorporating this rest recovers endothelial activation in response to rhCXCL12. As a final control, we show that blocking ICAM-1 interferes with T-cell adhesion and chemotaxis. This microphysiological system, which mimics in vivo stromal and vascular barriers, can be used to evaluate potentiation of immune chemotaxis into tumors while probing for vascular responses to potential therapeutics. Finally, we propose translational strategies by which this assay could be linked to preclinical and clinical models to support human dose prediction, personalized medicine, and the reduction, refinement, and replacement of animal models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
renshiq完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
nenoaowu发布了新的文献求助10
1秒前
1秒前
白煮蛋发布了新的文献求助10
2秒前
龙雾发布了新的文献求助10
2秒前
yoona发布了新的文献求助10
3秒前
3秒前
4秒前
lucky完成签到,获得积分10
5秒前
休123发布了新的文献求助10
5秒前
5秒前
6秒前
思思发布了新的文献求助10
7秒前
高文雅发布了新的文献求助10
7秒前
qwsc发布了新的文献求助10
8秒前
烂漫夜梅完成签到,获得积分10
8秒前
Helium发布了新的文献求助10
8秒前
勤恳幻雪完成签到,获得积分10
8秒前
8秒前
赘婿应助lixiaolu采纳,获得10
9秒前
xueqinFan完成签到,获得积分10
9秒前
灰鸽舞发布了新的文献求助10
9秒前
欧阳发布了新的文献求助10
10秒前
机智张完成签到,获得积分10
11秒前
Ava应助hanwenzzz采纳,获得10
12秒前
yale完成签到,获得积分20
12秒前
休123完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
杨仔完成签到,获得积分20
16秒前
16秒前
nn完成签到,获得积分20
18秒前
RQY完成签到,获得积分10
18秒前
宋亚佩完成签到,获得积分10
19秒前
19秒前
yale发布了新的文献求助10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489755
求助须知:如何正确求助?哪些是违规求助? 3076899
关于积分的说明 9146913
捐赠科研通 2769079
什么是DOI,文献DOI怎么找? 1519617
邀请新用户注册赠送积分活动 704068
科研通“疑难数据库(出版商)”最低求助积分说明 702068