Rational design of nickel‑cobalt sulfide nanorods grown on graphene with high performance for supercapacitors

硫化钴 超级电容器 石墨烯 纳米棒 材料科学 电化学 硫化镍 电极 电容 化学工程 硫化物 纳米技术 化学 冶金 物理化学 工程类
作者
Yanling Jin,Aiyue Sun,Jiahui Geng,Fang Ren,Zhengyan Chen,Lu Pei,Zhenfeng Sun,Yanli Du,Penggang Ren
出处
期刊:Diamond and Related Materials [Elsevier]
卷期号:137: 110151-110151 被引量:13
标识
DOI:10.1016/j.diamond.2023.110151
摘要

Nickel cobalt sulfides have exhibited great promise as supercapacitor electrode materials owing to the abundant redox states and considerable theoretical capacities. However, they still suffer from sluggish reaction kinetics, resulting in undesirable capacitance, cyclic and rate performances. Herein, electrochemical exfoliated graphene with high dispensability was utilized as the matrix and uniform nickel‑cobalt sulfide nanorods grown on graphene (Ni-Co-S/G) was achieved by a facile two-step strategy for enhanced capacitive performances. This well-constructed Ni-Co-S/G can provide plentiful active sites for electrochemical reaction, offer more efficient and rapid electron/ion transfer pathways during the charge/discharge process, and the tight contact of nickel‑cobalt sulfide nanorods and graphene can improve the stability. Consequently, the obtained Ni-Co-S/G electrode exhibits a high specific capacity of 1579.68 F g−1 at 1 A g−1, splendid rate capability (1240 F g−1 at 20 A g−1) and excellent cycling stability with capacity retention of 91.5 % after 5000 cycles at 5 A g−1. Additionally, the assembled asymmetric supercapacitor (ASC) device Ni-Co-S/G//AC with Ni-Co-S/G and commercial active carbon as positive and negative electrode displays an energy density of 75.3 W h kg−1 at the power density of 1125 W kg−1, still retaining 50.5 Wh kg−1 even at 16.9 kW kg−1. This work provides a potential strategy to design high-performance nickel‑cobalt sulfides electrode for advanced supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然卷的春天完成签到,获得积分10
刚刚
1秒前
蓝酒窝发布了新的文献求助10
1秒前
Never完成签到,获得积分10
1秒前
12345678发布了新的文献求助40
1秒前
2秒前
朴实安珊完成签到,获得积分10
2秒前
楚雨荨完成签到,获得积分20
2秒前
3秒前
3秒前
layzhj完成签到,获得积分10
3秒前
熙熙发布了新的文献求助10
3秒前
白沙叶完成签到,获得积分10
4秒前
4秒前
研友_LwlAgn发布了新的文献求助10
4秒前
bqin完成签到,获得积分20
4秒前
4秒前
紫色奶萨完成签到,获得积分10
5秒前
夹谷蕈完成签到 ,获得积分10
5秒前
5秒前
Joshua完成签到,获得积分10
5秒前
Lucas应助yyc采纳,获得10
6秒前
pang完成签到,获得积分20
6秒前
6秒前
NANANA发布了新的文献求助10
6秒前
6秒前
微风完成签到,获得积分10
6秒前
资紫丝发布了新的文献求助10
6秒前
古月方源发布了新的文献求助30
8秒前
科研通AI5应助红米空采纳,获得10
8秒前
8秒前
9秒前
pang发布了新的文献求助30
9秒前
9秒前
斯文墨镜完成签到,获得积分20
10秒前
11秒前
11秒前
我是老大应助why采纳,获得10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
The theory of nuclear magnetic relaxation in liquids 2000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541285
求助须知:如何正确求助?哪些是违规求助? 3118468
关于积分的说明 9336103
捐赠科研通 2816457
什么是DOI,文献DOI怎么找? 1548412
邀请新用户注册赠送积分活动 721501
科研通“疑难数据库(出版商)”最低求助积分说明 712690