GeSeNet: A General Semantic-Guided Network With Couple Mask Ensemble for Medical Image Fusion

计算机科学 图像融合 Boosting(机器学习) 人工智能 GSM演进的增强数据速率 计算 图像(数学) 计算机视觉 算法
作者
Jiawei Li,Jinyuan Liu,Shihua Zhou,Qiang Zhang,Nikola Kasabov
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16248-16261 被引量:19
标识
DOI:10.1109/tnnls.2023.3293274
摘要

At present, multimodal medical image fusion technology has become an essential means for researchers and doctors to predict diseases and study pathology. Nevertheless, how to reserve more unique features from different modal source images on the premise of ensuring time efficiency is a tricky problem. To handle this issue, we propose a flexible semantic-guided architecture with a mask-optimized framework in an end-to-end manner, termed as GeSeNet. Specifically, a region mask module is devised to deepen the learning of important information while pruning redundant computation for reducing the runtime. An edge enhancement module and a global refinement module are presented to modify the extracted features for boosting the edge textures and adjusting overall visual performance. In addition, we introduce a semantic module that is cascaded with the proposed fusion network to deliver semantic information into our generated results. Sufficient qualitative and quantitative comparative experiments (i.e., MRI-CT, MRI-PET, and MRI-SPECT) are deployed between our proposed method and ten state-of-the-art methods, which shows our generated images lead the way. Moreover, we also conduct operational efficiency comparisons and ablation experiments to prove that our proposed method can perform excellently in the field of multimodal medical image fusion. The code is available at https://github.com/lok-18/GeSeNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的梦完成签到,获得积分10
刚刚
小二郎应助wanggongxiu采纳,获得10
刚刚
2秒前
无限毛豆发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
轩辕山槐发布了新的文献求助10
6秒前
Lida完成签到,获得积分10
6秒前
颜南风完成签到 ,获得积分10
7秒前
lu发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
轻松小之发布了新的文献求助10
10秒前
yyy完成签到,获得积分20
10秒前
星辰大海应助zzzkyt采纳,获得10
10秒前
11秒前
森气发布了新的文献求助10
12秒前
佳佳不秃头完成签到,获得积分10
12秒前
Misaki发布了新的文献求助10
14秒前
李健应助wuping采纳,获得10
14秒前
可爱半凡发布了新的文献求助10
15秒前
ysl完成签到,获得积分10
15秒前
16秒前
歪歪发布了新的文献求助10
17秒前
17秒前
小六发布了新的文献求助10
17秒前
19秒前
19秒前
19秒前
leolee完成签到 ,获得积分10
20秒前
科目三应助可爱半凡采纳,获得10
21秒前
lu完成签到,获得积分10
21秒前
22秒前
zzzkyt发布了新的文献求助10
22秒前
wanggongxiu发布了新的文献求助10
23秒前
24秒前
Yi完成签到 ,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580