Rapid determination of the moisture content of triethyleneglycol dinitrate absorption tablets by near-infrared spectroscopy

校准 近红外光谱 含水量 水分 偏最小二乘回归 均方误差 分析化学(期刊) 吸收(声学) 光谱学 决定系数 化学 环境科学 材料科学 数学 色谱法 统计 光学 物理 复合材料 岩土工程 量子力学 工程类 有机化学
作者
Jinhua Liang,Narenchaogetu He,Le Jing,Guodong Deng
出处
期刊:Vibrational Spectroscopy [Elsevier BV]
卷期号:127: 103568-103568 被引量:2
标识
DOI:10.1016/j.vibspec.2023.103568
摘要

During the production of triethyleneglycol dinitrate (TEGDN) double-based propellants, excessive moisture content adversely affects the plastination of TEGDN absorption tablets. This study focused on developing a model for detecting moisture content in the TEGDN absorption tablets by near-infrared spectroscopy (NIRS). The spectral intervals of 1149.7–1248.8 nm and 1397.4–1515.1 nm were determined according to the competitive adaptive reweighted sampling (CARS) algorithm and comparison of the absorption peaks of TEGDN absorption tablet samples and the absorption peak of water. A combination of standard normal variables transformation (SNV) and first-order derivative (FD) was selected as the original spectral pre-processing method. The optimum number of factors for the moisture model was chosen as 7. A moisture quantification model was developed based on the Partial Least Squares (PLS) algorithm. The determination coefficient of the calibration and cross-validation (Rc2,Rcv2) were 0.9905 and 0.9869, respectively. The root means square error of the calibration and cross-validation (RMSEC, RMSECV) were 0.0158 and 0.0186, respectively. The developed moisture model was externally validated using a prediction set. The determination coefficient of the prediction (Rp2) was 0.9899, and the root mean square error of the prediction (RMSEP) was 0.0207. The mean absolute and mean relative errors between the predicted values of the NIRS method and the measured values of the traditional method were 0.0091 and 1.0819%, respectively. Therefore, the results show that the moisture model developed by NIRS can quickly and accurately detect the moisture content of TEGDN absorption tablets after removing moisture and determine whether the TEGDN absorption tablets are qualified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高灿完成签到 ,获得积分10
1秒前
Theone完成签到,获得积分10
1秒前
脑洞疼应助图图大耳朵采纳,获得120
1秒前
1秒前
勿奈何完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助30
2秒前
jfz完成签到,获得积分10
2秒前
2秒前
美味蟹黄堡完成签到,获得积分10
2秒前
3秒前
称心的以菱完成签到,获得积分10
3秒前
把秘密当成玩笑完成签到,获得积分10
3秒前
3秒前
Theone发布了新的文献求助10
4秒前
4秒前
缓慢煎蛋应助DONGmumu采纳,获得50
4秒前
5秒前
5秒前
Nicole完成签到,获得积分10
5秒前
chuiji完成签到,获得积分10
5秒前
英俊的铭应助可爱的彩虹采纳,获得10
5秒前
吹气球的金毛完成签到,获得积分10
6秒前
6秒前
Lucas应助lion采纳,获得20
6秒前
粿粿一定行完成签到 ,获得积分10
7秒前
nobody发布了新的文献求助10
7秒前
欧阳五子发布了新的文献求助10
7秒前
8秒前
俭朴依白完成签到,获得积分10
8秒前
10秒前
An发布了新的文献求助10
10秒前
melo完成签到 ,获得积分10
10秒前
醉林完成签到,获得积分10
10秒前
10秒前
薏晓完成签到 ,获得积分10
11秒前
何木萧发布了新的文献求助10
11秒前
科研通AI5应助devilfish13采纳,获得10
11秒前
mojibunny完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661438
求助须知:如何正确求助?哪些是违规求助? 3222458
关于积分的说明 9746040
捐赠科研通 2932102
什么是DOI,文献DOI怎么找? 1605461
邀请新用户注册赠送积分活动 757898
科研通“疑难数据库(出版商)”最低求助积分说明 734576