Research on energy management of hydrogen electric coupling system based on deep reinforcement learning

强化学习 计算机科学 能源管理 光伏系统 联轴节(管道) 风力发电 能量(信号处理) 数学优化 人工智能 工程类 机械工程 电气工程 统计 数学
作者
Tao Shi,Chang Xu,Wenhao Dong,Hangyu Zhou,Awais Bokhari,Jiří Jaromír Klemeš,Ning Han
出处
期刊:Energy [Elsevier BV]
卷期号:282: 128174-128174 被引量:30
标识
DOI:10.1016/j.energy.2023.128174
摘要

In this paper, a deep reinforcement learning-based energy optimization management method for hydrogen-electric coupling system is proposed for the conversion and utilization and joint optimization operation of hydrogen, wind and solar energy forms considering information uncertainty on the demand side of smart grid. Based on the wind energy, photovoltaic energy generation and load forecast information, the method uses deep Q network to simulate the energy management strategy set of the hydrogen-electric coupling system, and obtains the optimal strategy through reinforcement learning to finally realize the optimal operation of the hydrogen-electric coupling system based on the demand response. Firstly, based on the energy management model, a research framework and equipment model for integrated energy systems is established. On the basis of fundamental theories of reinforcement learning framework, Q-learning algorithm and DQN algorithm, the empirical replay mechanism and freezing parameter mechanism to improve the performance of DQN are analyzed, and the energy management and optimization of integrated energy system is completed with the objective of economy. By comparing the performance of DQN algorithms with different parameters in integrated energy system energy management, the simulation results demonstrate the improvement of algorithm performance after inheriting the set of strategies, and verify the feasibility and superiority of deep reinforcement learning compared to genetic algorithm in integrated energy system energy management applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌南松完成签到 ,获得积分10
1秒前
1秒前
数学情缘完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
shyotion完成签到,获得积分20
3秒前
3秒前
4秒前
柒染完成签到,获得积分10
4秒前
lg应助Zhang采纳,获得10
5秒前
温暖的涵易应助Zhang采纳,获得30
5秒前
5秒前
小程完成签到 ,获得积分10
5秒前
领导范儿应助叶子采纳,获得10
6秒前
6秒前
7秒前
7秒前
AHR发布了新的文献求助10
8秒前
shyotion发布了新的文献求助10
8秒前
小王啵啵发布了新的文献求助10
8秒前
9秒前
韩_发布了新的文献求助20
9秒前
9秒前
共享精神应助hklong采纳,获得10
9秒前
星移发布了新的文献求助10
9秒前
kingwill应助生动曼冬采纳,获得20
9秒前
anlan8888完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
绽放发布了新的文献求助10
11秒前
李莉莉发布了新的文献求助10
12秒前
儒雅的幻然完成签到,获得积分10
12秒前
fmx发布了新的文献求助10
12秒前
Jay完成签到 ,获得积分10
13秒前
回忆lhy完成签到,获得积分10
14秒前
15秒前
danielbest1234完成签到,获得积分10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955094
求助须知:如何正确求助?哪些是违规求助? 3501442
关于积分的说明 11102825
捐赠科研通 3231691
什么是DOI,文献DOI怎么找? 1786550
邀请新用户注册赠送积分活动 870142
科研通“疑难数据库(出版商)”最低求助积分说明 801813