In Situ Alloying with Hybrid Mesoporous Fe–N–C to Accelerate the Catalysis Efficiency of Pt for the Oxygen Reduction Reaction

材料科学 催化作用 合金 金属间化合物 纳米材料 介孔材料 氧化物 纳米颗粒 电化学 化学工程 石墨烯 纳米技术 纳米结构 质子交换膜燃料电池 冶金 化学 电极 物理化学 有机化学 工程类
作者
Xilong Wang,Qinghua Zhang,Hechun Jiang,Yadong Li,Hongwei Zhu,Lirong Zheng,Lin Gu,Han‐Pu Liang
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:11 (27): 10051-10060 被引量:17
标识
DOI:10.1021/acssuschemeng.3c01836
摘要

Pt-based intermetallic alloys with high activity and stability are promising for accelerating the cathodic oxygen reduction reaction (ORR) and large-scale application of proton exchange membrane fuel cells. So far, facile synthesis of Pt-based alloys in less time is desirable but still challenging. Herein, based on the traditional wet impregnation method, facile in situ reduction of H2PtCl6 and alloying with a hybrid nanostructure mainly doped with Fe single atoms as well as small amounts of Fe-based nanoparticles and oxides were developed to fabricate highly dispersed PtFe nanoparticles loaded on a mesoporous Fe–N–C support. Alloying of Pt derived from H2PtCl6 with various iron-based species existing in forms of single-atom, metallic, and oxide states was confirmed by systematic characterization, and the Fe content in the support is important for PtFe alloy formation, and the corresponding electrochemical performance promotion has been identified. The as-synthesized best-performance PtFe/Meso-PDA-5 catalyst delivered a high potential of 0.925 V at a current density of 3 mA cm–2 and achieved a high mass activity of 497.5 mA mgPt–1 at 0.9 V for the ORR in 0.1 M HClO4. More importantly, only 17.9% mass activity loss was observed after 10k potential cycles of the accelerated deterioration test. The present work provides a strategy for facile synthesis of Pt-based alloy nanomaterials for ORR catalysis and highlights the importance of supports in alloy formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
元万天完成签到,获得积分10
刚刚
超级无敌万能小金毛完成签到,获得积分10
3秒前
3秒前
科目三应助谢诚杰采纳,获得10
4秒前
年三月完成签到 ,获得积分10
6秒前
jiayile发布了新的文献求助10
7秒前
8秒前
10秒前
康大帅完成签到,获得积分10
10秒前
10秒前
ahead应助Hangyu采纳,获得10
11秒前
12秒前
12秒前
玖玖完成签到,获得积分10
13秒前
koko发布了新的文献求助10
14秒前
康大帅发布了新的文献求助10
14秒前
醒醒发布了新的文献求助10
15秒前
15秒前
16秒前
kk发布了新的文献求助10
16秒前
优秀小笼包完成签到,获得积分10
17秒前
Aurora完成签到,获得积分10
17秒前
Kelly1426完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
谢诚杰发布了新的文献求助10
19秒前
19秒前
20秒前
NexusExplorer应助锌锌点灯采纳,获得10
20秒前
CodeCraft应助科研快乐小狗采纳,获得10
21秒前
21秒前
21秒前
吱布吱布发布了新的文献求助10
22秒前
科研通AI5应助小哲采纳,获得10
23秒前
wangjq完成签到,获得积分10
24秒前
CGBY完成签到 ,获得积分10
24秒前
ml发布了新的文献求助10
24秒前
活力的幻枫完成签到,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769687
求助须知:如何正确求助?哪些是违规求助? 3314764
关于积分的说明 10173625
捐赠科研通 3030095
什么是DOI,文献DOI怎么找? 1662612
邀请新用户注册赠送积分活动 795054
科研通“疑难数据库(出版商)”最低求助积分说明 756519