Online visual end-to-end detection monitoring on surface defect of aluminum strip under the industrial few-shot condition

计算机科学 人工智能 端到端原则 特征(语言学) 数据挖掘 模式识别(心理学) 条状物 任务(项目管理) 弹丸 机器学习 工程类 系统工程 哲学 语言学 化学 有机化学
作者
Zhuxi Ma,Yibo Li,Minghui Huang,Nanzhou Deng
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:70: 31-47 被引量:9
标识
DOI:10.1016/j.jmsy.2023.06.016
摘要

Surface defect detection systems based on deep learning are employed in the manufacturing system, and their good detection performance largely relies on abundant annotated data. Nevertheless, industrial datasets are often difficult to obtain, which hinders the development of defect detection systems to some extent. In an effort to address the issue that the scarcity of training data leads to poor performance, this paper proposes a novel end to end few-shot detection method for industrial real-time detection on aluminum strips. The meta-learning theory is introduced into the multi-scale structure of the YOLOv4 framework, which means that multi-scale meta-feature maps are extracted through the backbone network and each meta-feature map is recalibrated by reweighted vectors to strengthen class-specific features. Subsequently, a multi-scale prediction module with a new parsing strategy is designed to locate and classify the defects at different scales for the reweighted meta-features. All experiments are performed using data collected from the aluminum strip production line in a cold rolling workshop. In addition, the dataset required for training is constructed based on the few-shot training strategy. Pre-training is conducted on a large amount of labeled data from base classes in advance, and the pre-trained weights are then loaded to train the model on a small amount of labeled data from all classes to rapidly deploy the model in multi-task scenarios. The proposed method shows excellent performance, improving the accuracy for novel classes by more than 14.6%, which enhances the industrial practicality of detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
云村村民完成签到,获得积分10
1秒前
ky一下发布了新的文献求助10
1秒前
喵喵完成签到 ,获得积分10
1秒前
1秒前
1秒前
顺心纸鹤发布了新的文献求助10
2秒前
2秒前
脑洞疼应助Richard采纳,获得10
2秒前
聂落雁完成签到,获得积分10
3秒前
Jonathan完成签到,获得积分10
3秒前
浮游应助秋风之墩采纳,获得10
3秒前
KeYang完成签到,获得积分10
4秒前
4秒前
4秒前
ysxl发布了新的文献求助10
5秒前
清秀青荷完成签到,获得积分10
5秒前
科研通AI6应助WYS采纳,获得50
5秒前
5秒前
科研通AI6应助xwxhbydmet采纳,获得10
6秒前
热心的送终完成签到 ,获得积分10
6秒前
thuuu完成签到,获得积分10
6秒前
子车谷波完成签到,获得积分10
6秒前
鳗鱼绿蝶发布了新的文献求助10
7秒前
zhucc发布了新的文献求助10
7秒前
8秒前
8秒前
sunny发布了新的文献求助30
8秒前
myc641发布了新的文献求助10
8秒前
牧林听风发布了新的文献求助10
8秒前
year完成签到,获得积分10
9秒前
小富婆完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
CR7应助ZiZi采纳,获得20
14秒前
量子星尘发布了新的文献求助10
14秒前
yxsh完成签到,获得积分10
15秒前
feifei发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244