Online visual end-to-end detection monitoring on surface defect of aluminum strip under the industrial few-shot condition

计算机科学 人工智能 端到端原则 特征(语言学) 数据挖掘 模式识别(心理学) 条状物 任务(项目管理) 弹丸 机器学习 工程类 系统工程 哲学 语言学 化学 有机化学
作者
Zhuxi Ma,Yibo Li,Minghui Huang,Nanzhou Deng
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:70: 31-47 被引量:9
标识
DOI:10.1016/j.jmsy.2023.06.016
摘要

Surface defect detection systems based on deep learning are employed in the manufacturing system, and their good detection performance largely relies on abundant annotated data. Nevertheless, industrial datasets are often difficult to obtain, which hinders the development of defect detection systems to some extent. In an effort to address the issue that the scarcity of training data leads to poor performance, this paper proposes a novel end to end few-shot detection method for industrial real-time detection on aluminum strips. The meta-learning theory is introduced into the multi-scale structure of the YOLOv4 framework, which means that multi-scale meta-feature maps are extracted through the backbone network and each meta-feature map is recalibrated by reweighted vectors to strengthen class-specific features. Subsequently, a multi-scale prediction module with a new parsing strategy is designed to locate and classify the defects at different scales for the reweighted meta-features. All experiments are performed using data collected from the aluminum strip production line in a cold rolling workshop. In addition, the dataset required for training is constructed based on the few-shot training strategy. Pre-training is conducted on a large amount of labeled data from base classes in advance, and the pre-trained weights are then loaded to train the model on a small amount of labeled data from all classes to rapidly deploy the model in multi-task scenarios. The proposed method shows excellent performance, improving the accuracy for novel classes by more than 14.6%, which enhances the industrial practicality of detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助金色年华采纳,获得10
刚刚
充电宝应助kh453采纳,获得10
刚刚
正经俠发布了新的文献求助10
刚刚
一衣发布了新的文献求助20
1秒前
可爱的函函应助药学牛马采纳,获得10
1秒前
XM发布了新的文献求助10
1秒前
专注之双完成签到,获得积分10
2秒前
SciGPT应助十一采纳,获得10
2秒前
2秒前
A1234完成签到,获得积分10
3秒前
刘铭晨发布了新的文献求助10
4秒前
孙冉冉完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
大模型应助hhzz采纳,获得10
9秒前
一只智慧喵完成签到,获得积分10
9秒前
科目三应助Fundamental采纳,获得10
10秒前
10秒前
miumiuka发布了新的文献求助10
11秒前
greenPASS666发布了新的文献求助10
12秒前
xuanxuan发布了新的文献求助10
12秒前
zfy发布了新的文献求助10
14秒前
14秒前
14秒前
Maor完成签到,获得积分10
14秒前
白菜发布了新的文献求助10
15秒前
15秒前
16秒前
妮妮完成签到 ,获得积分10
18秒前
18秒前
傲娇的凡旋应助spurs17采纳,获得10
18秒前
长情若魔完成签到,获得积分10
20秒前
XM完成签到,获得积分10
20秒前
20秒前
LQW发布了新的文献求助30
20秒前
大个应助Rrr采纳,获得10
20秒前
21秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808