Online visual end-to-end detection monitoring on surface defect of aluminum strip under the industrial few-shot condition

计算机科学 人工智能 端到端原则 特征(语言学) 数据挖掘 模式识别(心理学) 条状物 任务(项目管理) 弹丸 机器学习 工程类 系统工程 哲学 语言学 化学 有机化学
作者
Zhuxi Ma,Yibo Li,Minghui Huang,Nanzhou Deng
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:70: 31-47 被引量:9
标识
DOI:10.1016/j.jmsy.2023.06.016
摘要

Surface defect detection systems based on deep learning are employed in the manufacturing system, and their good detection performance largely relies on abundant annotated data. Nevertheless, industrial datasets are often difficult to obtain, which hinders the development of defect detection systems to some extent. In an effort to address the issue that the scarcity of training data leads to poor performance, this paper proposes a novel end to end few-shot detection method for industrial real-time detection on aluminum strips. The meta-learning theory is introduced into the multi-scale structure of the YOLOv4 framework, which means that multi-scale meta-feature maps are extracted through the backbone network and each meta-feature map is recalibrated by reweighted vectors to strengthen class-specific features. Subsequently, a multi-scale prediction module with a new parsing strategy is designed to locate and classify the defects at different scales for the reweighted meta-features. All experiments are performed using data collected from the aluminum strip production line in a cold rolling workshop. In addition, the dataset required for training is constructed based on the few-shot training strategy. Pre-training is conducted on a large amount of labeled data from base classes in advance, and the pre-trained weights are then loaded to train the model on a small amount of labeled data from all classes to rapidly deploy the model in multi-task scenarios. The proposed method shows excellent performance, improving the accuracy for novel classes by more than 14.6%, which enhances the industrial practicality of detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敬老院N号应助kathy采纳,获得30
刚刚
陈住气发布了新的文献求助10
刚刚
1秒前
希望天下0贩的0应助Momo采纳,获得10
1秒前
absb发布了新的文献求助10
2秒前
Forez发布了新的文献求助10
2秒前
zhuzhu发布了新的文献求助10
2秒前
3秒前
慕青应助不安的秋白采纳,获得10
3秒前
iii发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
称心寒松发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
yehaidadao完成签到,获得积分10
4秒前
欢呼妙菱发布了新的文献求助10
6秒前
6秒前
MizzZeus完成签到,获得积分10
6秒前
6秒前
善学以致用应助up采纳,获得10
6秒前
7秒前
ll发布了新的文献求助10
7秒前
星辰大海应助蚕宝宝小子采纳,获得10
8秒前
雪白的面包完成签到 ,获得积分10
9秒前
类囊体薄膜完成签到,获得积分10
9秒前
absb完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
大个应助Forez采纳,获得10
10秒前
王小元发布了新的文献求助10
10秒前
pincoudegushi发布了新的文献求助10
10秒前
11秒前
yx_cheng应助自觉妖妖采纳,获得30
13秒前
光亮青柏完成签到 ,获得积分10
13秒前
13秒前
namk完成签到,获得积分10
14秒前
Momo发布了新的文献求助10
14秒前
昏睡的蟠桃应助巫凝天采纳,获得300
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650