Online visual end-to-end detection monitoring on surface defect of aluminum strip under the industrial few-shot condition

计算机科学 人工智能 端到端原则 特征(语言学) 数据挖掘 模式识别(心理学) 条状物 任务(项目管理) 弹丸 机器学习 工程类 系统工程 语言学 哲学 有机化学 化学
作者
Zhuxi Ma,Yibo Li,Minghui Huang,Ningyuan Deng
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:70: 31-47 被引量:5
标识
DOI:10.1016/j.jmsy.2023.06.016
摘要

Surface defect detection systems based on deep learning are employed in the manufacturing system, and their good detection performance largely relies on abundant annotated data. Nevertheless, industrial datasets are often difficult to obtain, which hinders the development of defect detection systems to some extent. In an effort to address the issue that the scarcity of training data leads to poor performance, this paper proposes a novel end to end few-shot detection method for industrial real-time detection on aluminum strips. The meta-learning theory is introduced into the multi-scale structure of the YOLOv4 framework, which means that multi-scale meta-feature maps are extracted through the backbone network and each meta-feature map is recalibrated by reweighted vectors to strengthen class-specific features. Subsequently, a multi-scale prediction module with a new parsing strategy is designed to locate and classify the defects at different scales for the reweighted meta-features. All experiments are performed using data collected from the aluminum strip production line in a cold rolling workshop. In addition, the dataset required for training is constructed based on the few-shot training strategy. Pre-training is conducted on a large amount of labeled data from base classes in advance, and the pre-trained weights are then loaded to train the model on a small amount of labeled data from all classes to rapidly deploy the model in multi-task scenarios. The proposed method shows excellent performance, improving the accuracy for novel classes by more than 14.6%, which enhances the industrial practicality of detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pp‘s发布了新的文献求助10
刚刚
南暮完成签到,获得积分10
刚刚
1秒前
Lucas应助dd采纳,获得10
3秒前
4秒前
MS发布了新的文献求助10
4秒前
5秒前
FashionBoy应助左左采纳,获得10
5秒前
5秒前
6秒前
hangli发布了新的文献求助10
8秒前
郑思雨完成签到,获得积分10
8秒前
Xiang Li完成签到,获得积分20
9秒前
愿喜完成签到,获得积分10
9秒前
Meredith应助123采纳,获得10
11秒前
sc发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
15秒前
15秒前
Akim应助刘星星采纳,获得10
15秒前
桔桔桔完成签到 ,获得积分10
15秒前
Halland发布了新的文献求助10
16秒前
001发布了新的文献求助10
16秒前
16秒前
桐桐应助zhuooo采纳,获得10
19秒前
雨水发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
zzzz完成签到,获得积分10
21秒前
21秒前
风和日丽发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
JiayaoYang发布了新的文献求助10
23秒前
24秒前
24秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170704
求助须知:如何正确求助?哪些是违规求助? 2821739
关于积分的说明 7936289
捐赠科研通 2482180
什么是DOI,文献DOI怎么找? 1322371
科研通“疑难数据库(出版商)”最低求助积分说明 633620
版权声明 602608