亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Approaches, Applications, and Challenges in Physiological Emotion Recognition—A Tutorial Overview

模式 计算机科学 过程(计算) 情绪识别 人机交互 可穿戴计算机 情感计算 质量(理念) 认知心理学 人工智能 心理学 嵌入式系统 社会学 哲学 操作系统 认识论 社会科学
作者
Yekta Said Can,Bhargavi Mahesh,Elisabeth André
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:111 (10): 1287-1313 被引量:15
标识
DOI:10.1109/jproc.2023.3286445
摘要

An automatic emotion recognition system can serve as a fundamental framework for various applications in daily life from monitoring emotional well-being to improving the quality of life through better emotion regulation. Understanding the process of emotion manifestation becomes crucial for building emotion recognition systems. An emotional experience results in changes not only in interpersonal behavior but also in physiological responses. Physiological signals are one of the most reliable means for recognizing emotions since individuals cannot consciously manipulate them for a long duration. These signals can be captured by medical-grade wearable devices, as well as commercial smart watches and smart bands. With the shift in research direction from laboratory to unrestricted daily life, commercial devices have been employed ubiquitously. However, this shift has introduced several challenges, such as low data quality, dependency on subjective self-reports, unlimited movement-related changes, and artifacts in physiological signals. This tutorial provides an overview of practical aspects of emotion recognition, such as experiment design, properties of different physiological modalities, existing datasets, suitable machine learning algorithms for physiological data, and several applications. It aims to provide the necessary psychological and physiological backgrounds through various emotion theories and the physiological manifestation of emotions, thereby laying a foundation for emotion recognition. Finally, the tutorial discusses open research directions and possible solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrLee完成签到,获得积分10
2秒前
坚强莺完成签到,获得积分10
14秒前
DeaR完成签到 ,获得积分10
15秒前
17秒前
18秒前
米儿发布了新的文献求助10
20秒前
25秒前
星辰大海应助youngup采纳,获得30
35秒前
Hubery完成签到 ,获得积分10
35秒前
Endlessway给NicholasZ的求助进行了留言
36秒前
友好亚男完成签到 ,获得积分10
38秒前
米儿完成签到,获得积分10
38秒前
petrichor完成签到 ,获得积分10
44秒前
45秒前
杳鸢应助felix采纳,获得10
50秒前
58秒前
圈圈发布了新的文献求助10
1分钟前
CipherSage应助圈圈采纳,获得10
1分钟前
兴奋的若菱完成签到 ,获得积分10
1分钟前
kk_1315完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
康康完成签到 ,获得积分10
1分钟前
youngup发布了新的文献求助30
1分钟前
Tr发布了新的文献求助10
1分钟前
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
orixero应助叫滚滚采纳,获得10
2分钟前
传奇3应助BLltree采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
BLltree发布了新的文献求助10
2分钟前
tylscxf发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
FDA-2: Frenchay Dysarthria Assessment 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3215590
求助须知:如何正确求助?哪些是违规求助? 2864271
关于积分的说明 8141983
捐赠科研通 2530452
什么是DOI,文献DOI怎么找? 1364668
科研通“疑难数据库(出版商)”最低求助积分说明 644219
邀请新用户注册赠送积分活动 616818