Knowledge-Sensed Cognitive Diagnosis for Intelligent Education Platforms

嵌入 计算机科学 代表(政治) 知识表示与推理 认知 背景(考古学) 人工智能 矩阵表示法 功能(生物学) 知识管理 心理学 群(周期表) 法学 化学 有机化学 神经科学 古生物学 政治 生物 进化生物学 政治学
作者
Haiping Ma,Manwei Li,Le Wu,Haifeng Zhang,Yunbo Cao,Xingyi Zhang,Xuemin Zhao
标识
DOI:10.1145/3511808.3557372
摘要

Cognitive diagnosis is a fundamental issue of intelligent education platforms, whose goal is to reveal the mastery of students on knowledge concepts. Recently, certain efforts have been made to improve the diagnosis precision, by designing deep neural networks-based diagnostic functions or incorporating more rich context features to enhance the representation of students and exercises. However, how to interpretably infer the student's mastery over non-interactive knowledge concepts (i.e., knowledge concepts not related to his/her exercising records) still remains challenging, especially when not giving relations between knowledge concepts. To this end, we propose a Knowledge-Sensed Cognitive Diagnosis (KSCD) framework, aiming at learning intrinsic relations among knowledge concepts from student response logs and incorporating them for inferring students' mastery over all knowledge concepts in an end-to-end manner. Specifically, we firstly project students, exercises and knowledge concepts into embedding representation matrices, where the intrinsic relations among knowledge concepts are reflected in the knowledge embedding representation matrix. Then, the knowledge-sensed student knowledge mastery vector and exercise factor vectors are obtained by the multiply product of their embedding representations and the knowledge embedding representation matrix, which make the student's mastery of non-interactive knowledge concepts be interpretably inferred. Finally, we can utilize classical student-exercise interaction functions to predict student's exercising performance and jointly train the model. In additional, we also design a new function to better model the student-exercise interactions. Extensive experimental results on two real-world datasets clearly show the significant performance gain of our KSCD framework, especially in predicting students' mastery over non-interactive knowledge concepts, by comparing to state-of-the-art cognitive diagnosis models (CDMs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nana完成签到,获得积分10
刚刚
course发布了新的文献求助10
1秒前
简单的惋庭完成签到 ,获得积分10
1秒前
慕青应助zz采纳,获得10
1秒前
剑K发布了新的文献求助10
4秒前
4秒前
Nana发布了新的文献求助10
4秒前
Min发布了新的文献求助10
5秒前
chunjianghua发布了新的文献求助30
5秒前
傅荣轩完成签到,获得积分10
6秒前
6秒前
华仔应助从此以后采纳,获得10
6秒前
感性的莺完成签到,获得积分10
8秒前
酷波er应助LamChem采纳,获得10
8秒前
drwalyssa发布了新的文献求助10
9秒前
旺仔仔发布了新的文献求助10
10秒前
10秒前
四代火影完成签到,获得积分10
11秒前
11秒前
12秒前
orixero应助66采纳,获得10
15秒前
111发布了新的文献求助10
15秒前
剑K完成签到,获得积分10
15秒前
15秒前
16秒前
Chen关注了科研通微信公众号
16秒前
17秒前
科研傻子发布了新的文献求助10
17秒前
以岸驳回了Miller应助
18秒前
hd完成签到,获得积分10
18秒前
机灵花生发布了新的文献求助10
20秒前
旺仔仔完成签到,获得积分10
20秒前
SUE发布了新的文献求助10
21秒前
21秒前
21秒前
固的曼完成签到,获得积分10
21秒前
25秒前
111完成签到,获得积分10
25秒前
zz发布了新的文献求助10
25秒前
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919