Knowledge-Sensed Cognitive Diagnosis for Intelligent Education Platforms

嵌入 计算机科学 代表(政治) 知识表示与推理 认知 背景(考古学) 人工智能 矩阵表示法 功能(生物学) 知识管理 心理学 群(周期表) 法学 化学 有机化学 神经科学 古生物学 政治 生物 进化生物学 政治学
作者
Haiping Ma,Manwei Li,Le Wu,Haifeng Zhang,Yunbo Cao,Xingyi Zhang,Xuemin Zhao
标识
DOI:10.1145/3511808.3557372
摘要

Cognitive diagnosis is a fundamental issue of intelligent education platforms, whose goal is to reveal the mastery of students on knowledge concepts. Recently, certain efforts have been made to improve the diagnosis precision, by designing deep neural networks-based diagnostic functions or incorporating more rich context features to enhance the representation of students and exercises. However, how to interpretably infer the student's mastery over non-interactive knowledge concepts (i.e., knowledge concepts not related to his/her exercising records) still remains challenging, especially when not giving relations between knowledge concepts. To this end, we propose a Knowledge-Sensed Cognitive Diagnosis (KSCD) framework, aiming at learning intrinsic relations among knowledge concepts from student response logs and incorporating them for inferring students' mastery over all knowledge concepts in an end-to-end manner. Specifically, we firstly project students, exercises and knowledge concepts into embedding representation matrices, where the intrinsic relations among knowledge concepts are reflected in the knowledge embedding representation matrix. Then, the knowledge-sensed student knowledge mastery vector and exercise factor vectors are obtained by the multiply product of their embedding representations and the knowledge embedding representation matrix, which make the student's mastery of non-interactive knowledge concepts be interpretably inferred. Finally, we can utilize classical student-exercise interaction functions to predict student's exercising performance and jointly train the model. In additional, we also design a new function to better model the student-exercise interactions. Extensive experimental results on two real-world datasets clearly show the significant performance gain of our KSCD framework, especially in predicting students' mastery over non-interactive knowledge concepts, by comparing to state-of-the-art cognitive diagnosis models (CDMs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
hh完成签到,获得积分10
2秒前
伶俐的冰之完成签到,获得积分10
4秒前
两只老虎和兔子完成签到,获得积分10
5秒前
Novice6354完成签到 ,获得积分10
6秒前
一直发布了新的文献求助10
7秒前
7秒前
9秒前
英姑应助111111采纳,获得10
11秒前
小孙孙完成签到 ,获得积分10
11秒前
科研三井泽完成签到,获得积分10
11秒前
慕青应助牛牛眉目采纳,获得10
12秒前
Kiling发布了新的文献求助10
13秒前
13秒前
shencan发布了新的文献求助10
14秒前
16秒前
小猫发布了新的文献求助10
17秒前
18秒前
典雅大白菜真实的钥匙完成签到,获得积分10
20秒前
根根发布了新的文献求助10
21秒前
22秒前
九月完成签到,获得积分10
24秒前
111111发布了新的文献求助10
24秒前
Jasper应助nenoaowu采纳,获得10
24秒前
25秒前
ivyyyyyy完成签到,获得积分10
26秒前
华青ww发布了新的文献求助10
28秒前
善学以致用应助任性雁风采纳,获得10
28秒前
29秒前
muuch发布了新的文献求助10
30秒前
CipherSage应助根根采纳,获得10
31秒前
31秒前
君君完成签到,获得积分10
32秒前
落寞平蝶完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361