Knowledge-Sensed Cognitive Diagnosis for Intelligent Education Platforms

嵌入 计算机科学 代表(政治) 知识表示与推理 认知 背景(考古学) 人工智能 矩阵表示法 功能(生物学) 知识管理 心理学 古生物学 化学 有机化学 神经科学 进化生物学 政治 政治学 法学 群(周期表) 生物
作者
Haiping Ma,Manwei Li,Le Wu,Haifeng Zhang,Yunbo Cao,Xingyi Zhang,Xuemin Zhao
标识
DOI:10.1145/3511808.3557372
摘要

Cognitive diagnosis is a fundamental issue of intelligent education platforms, whose goal is to reveal the mastery of students on knowledge concepts. Recently, certain efforts have been made to improve the diagnosis precision, by designing deep neural networks-based diagnostic functions or incorporating more rich context features to enhance the representation of students and exercises. However, how to interpretably infer the student's mastery over non-interactive knowledge concepts (i.e., knowledge concepts not related to his/her exercising records) still remains challenging, especially when not giving relations between knowledge concepts. To this end, we propose a Knowledge-Sensed Cognitive Diagnosis (KSCD) framework, aiming at learning intrinsic relations among knowledge concepts from student response logs and incorporating them for inferring students' mastery over all knowledge concepts in an end-to-end manner. Specifically, we firstly project students, exercises and knowledge concepts into embedding representation matrices, where the intrinsic relations among knowledge concepts are reflected in the knowledge embedding representation matrix. Then, the knowledge-sensed student knowledge mastery vector and exercise factor vectors are obtained by the multiply product of their embedding representations and the knowledge embedding representation matrix, which make the student's mastery of non-interactive knowledge concepts be interpretably inferred. Finally, we can utilize classical student-exercise interaction functions to predict student's exercising performance and jointly train the model. In additional, we also design a new function to better model the student-exercise interactions. Extensive experimental results on two real-world datasets clearly show the significant performance gain of our KSCD framework, especially in predicting students' mastery over non-interactive knowledge concepts, by comparing to state-of-the-art cognitive diagnosis models (CDMs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuga完成签到,获得积分10
2秒前
Wxr123发布了新的文献求助10
2秒前
李珅玥完成签到,获得积分10
3秒前
Roy发布了新的文献求助10
4秒前
几两发布了新的文献求助10
4秒前
jerry完成签到,获得积分10
5秒前
樱桃汽水完成签到 ,获得积分10
5秒前
7秒前
8秒前
淡定可乐完成签到,获得积分10
9秒前
overmind发布了新的文献求助20
9秒前
10秒前
11秒前
12秒前
狂妄冰戟发布了新的文献求助10
12秒前
13秒前
14秒前
所所应助奶昔采纳,获得10
15秒前
英吉利25发布了新的文献求助10
16秒前
LVMIN完成签到,获得积分10
17秒前
浅忆发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
bkagyin应助overmind采纳,获得10
20秒前
wadihjasifh完成签到,获得积分10
20秒前
赘婿应助sunqian采纳,获得10
24秒前
魏头头完成签到 ,获得积分10
24秒前
火桑花发布了新的文献求助10
25秒前
Akim应助cmx采纳,获得10
26秒前
WC241002292完成签到,获得积分10
27秒前
颜倾完成签到,获得积分10
28秒前
29秒前
xkm完成签到,获得积分10
30秒前
hang完成签到,获得积分10
31秒前
江沉晚吟完成签到 ,获得积分10
31秒前
Hello应助狂妄冰戟采纳,获得10
31秒前
32秒前
浮游应助星辰坠于海采纳,获得10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460885
求助须知:如何正确求助?哪些是违规求助? 4565924
关于积分的说明 14302173
捐赠科研通 4491506
什么是DOI,文献DOI怎么找? 2460346
邀请新用户注册赠送积分活动 1449679
关于科研通互助平台的介绍 1425492