亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge-Sensed Cognitive Diagnosis for Intelligent Education Platforms

嵌入 计算机科学 代表(政治) 知识表示与推理 认知 背景(考古学) 人工智能 矩阵表示法 功能(生物学) 知识管理 心理学 古生物学 化学 有机化学 神经科学 进化生物学 政治 政治学 法学 群(周期表) 生物
作者
Haiping Ma,Manwei Li,Le Wu,Haifeng Zhang,Yunbo Cao,Xingyi Zhang,Xuemin Zhao
标识
DOI:10.1145/3511808.3557372
摘要

Cognitive diagnosis is a fundamental issue of intelligent education platforms, whose goal is to reveal the mastery of students on knowledge concepts. Recently, certain efforts have been made to improve the diagnosis precision, by designing deep neural networks-based diagnostic functions or incorporating more rich context features to enhance the representation of students and exercises. However, how to interpretably infer the student's mastery over non-interactive knowledge concepts (i.e., knowledge concepts not related to his/her exercising records) still remains challenging, especially when not giving relations between knowledge concepts. To this end, we propose a Knowledge-Sensed Cognitive Diagnosis (KSCD) framework, aiming at learning intrinsic relations among knowledge concepts from student response logs and incorporating them for inferring students' mastery over all knowledge concepts in an end-to-end manner. Specifically, we firstly project students, exercises and knowledge concepts into embedding representation matrices, where the intrinsic relations among knowledge concepts are reflected in the knowledge embedding representation matrix. Then, the knowledge-sensed student knowledge mastery vector and exercise factor vectors are obtained by the multiply product of their embedding representations and the knowledge embedding representation matrix, which make the student's mastery of non-interactive knowledge concepts be interpretably inferred. Finally, we can utilize classical student-exercise interaction functions to predict student's exercising performance and jointly train the model. In additional, we also design a new function to better model the student-exercise interactions. Extensive experimental results on two real-world datasets clearly show the significant performance gain of our KSCD framework, especially in predicting students' mastery over non-interactive knowledge concepts, by comparing to state-of-the-art cognitive diagnosis models (CDMs).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mrjohn完成签到,获得积分0
4秒前
15秒前
丘比特应助doublenine18采纳,获得30
19秒前
wwww威完成签到,获得积分10
32秒前
YHF2发布了新的文献求助10
40秒前
YHF2完成签到,获得积分10
46秒前
56秒前
doublenine18发布了新的文献求助30
1分钟前
1分钟前
李丹阳完成签到,获得积分10
1分钟前
Criminology34举报zz求助涉嫌违规
1分钟前
1分钟前
Bin_Liu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助风华正茂采纳,获得10
1分钟前
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
布吉岛呀完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
风华正茂发布了新的文献求助10
3分钟前
deng203完成签到,获得积分10
3分钟前
3分钟前
Bin_Liu完成签到,获得积分20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
潘小嘎完成签到 ,获得积分10
3分钟前
sswy完成签到 ,获得积分10
4分钟前
4分钟前
神明完成签到 ,获得积分10
5分钟前
5分钟前
WW完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639678
求助须知:如何正确求助?哪些是违规求助? 4749674
关于积分的说明 15007074
捐赠科研通 4797837
什么是DOI,文献DOI怎么找? 2563943
邀请新用户注册赠送积分活动 1522817
关于科研通互助平台的介绍 1482514