Knowledge-Sensed Cognitive Diagnosis for Intelligent Education Platforms

嵌入 计算机科学 代表(政治) 知识表示与推理 认知 背景(考古学) 人工智能 矩阵表示法 功能(生物学) 知识管理 心理学 古生物学 化学 有机化学 神经科学 进化生物学 政治 政治学 法学 群(周期表) 生物
作者
Haiping Ma,Manwei Li,Le Wu,Haifeng Zhang,Yunbo Cao,Xingyi Zhang,Xuemin Zhao
标识
DOI:10.1145/3511808.3557372
摘要

Cognitive diagnosis is a fundamental issue of intelligent education platforms, whose goal is to reveal the mastery of students on knowledge concepts. Recently, certain efforts have been made to improve the diagnosis precision, by designing deep neural networks-based diagnostic functions or incorporating more rich context features to enhance the representation of students and exercises. However, how to interpretably infer the student's mastery over non-interactive knowledge concepts (i.e., knowledge concepts not related to his/her exercising records) still remains challenging, especially when not giving relations between knowledge concepts. To this end, we propose a Knowledge-Sensed Cognitive Diagnosis (KSCD) framework, aiming at learning intrinsic relations among knowledge concepts from student response logs and incorporating them for inferring students' mastery over all knowledge concepts in an end-to-end manner. Specifically, we firstly project students, exercises and knowledge concepts into embedding representation matrices, where the intrinsic relations among knowledge concepts are reflected in the knowledge embedding representation matrix. Then, the knowledge-sensed student knowledge mastery vector and exercise factor vectors are obtained by the multiply product of their embedding representations and the knowledge embedding representation matrix, which make the student's mastery of non-interactive knowledge concepts be interpretably inferred. Finally, we can utilize classical student-exercise interaction functions to predict student's exercising performance and jointly train the model. In additional, we also design a new function to better model the student-exercise interactions. Extensive experimental results on two real-world datasets clearly show the significant performance gain of our KSCD framework, especially in predicting students' mastery over non-interactive knowledge concepts, by comparing to state-of-the-art cognitive diagnosis models (CDMs).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒文青应助顾白凡采纳,获得50
刚刚
斯文吐司完成签到 ,获得积分10
1秒前
CodeCraft应助开朗艳一采纳,获得10
1秒前
2秒前
2秒前
快乐随心完成签到 ,获得积分10
2秒前
哈哈完成签到,获得积分10
3秒前
王也发布了新的文献求助10
3秒前
Easter发布了新的文献求助10
4秒前
4秒前
Stella应助stevenli采纳,获得10
4秒前
cyclone发布了新的文献求助10
4秒前
SciGPT应助stevenli采纳,获得50
4秒前
万能图书馆应助邱海华采纳,获得10
4秒前
xx发布了新的文献求助10
4秒前
5秒前
MMMMathilda23发布了新的文献求助10
5秒前
kingwill举报Dimples求助涉嫌违规
5秒前
6秒前
robin发布了新的文献求助10
7秒前
今后应助聪慧的眼睛采纳,获得10
7秒前
酷炫迎波发布了新的文献求助10
7秒前
自私的猫发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
song发布了新的文献求助10
9秒前
9秒前
xm完成签到,获得积分10
9秒前
华仔应助z00m采纳,获得10
10秒前
10秒前
QH发布了新的文献求助30
10秒前
活力惜寒发布了新的文献求助10
12秒前
所所应助顾白凡采纳,获得10
12秒前
12秒前
自私的猫完成签到,获得积分10
12秒前
凤羽完成签到,获得积分10
13秒前
锅包肉完成签到 ,获得积分10
13秒前
烟花应助玄灵采纳,获得10
14秒前
16秒前
彭于晏应助Naturewoman采纳,获得10
16秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584225
求助须知:如何正确求助?哪些是违规求助? 4667748
关于积分的说明 14769485
捐赠科研通 4610238
什么是DOI,文献DOI怎么找? 2529727
邀请新用户注册赠送积分活动 1498707
关于科研通互助平台的介绍 1467270