Prediction of Central Lymph Node Metastasis in cN0 Papillary Thyroid Carcinoma by CT Radiomics

医学 接收机工作特性 放射科 无线电技术 甲状腺癌 甲状腺癌 淋巴结 癌症 甲状腺 病理 内科学
作者
Yun Peng,Zhaotao Zhang,Tongtong Wang,Ya Wang,Chunhua Li,Minjing Zuo,Huashan Lin,Lianggeng Gong
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (7): 1400-1407 被引量:22
标识
DOI:10.1016/j.acra.2022.09.002
摘要

To explore the feasibility of the preoperative prediction of pathological central lymph node metastasis (CLNM) status in patients with negative clinical lymph node (cN0) papillary thyroid carcinoma (PTC) using a computed tomography (CT) radiomics signature.A total of 97 PTC cN0 nodules with CLNM pathology data (pN0, with CLNM, n = 59; pN1, without CLNM, n = 38) in 85 patients were divided into a training set (n = 69) and a validation set (n = 28). For each lesion, 321 radiomic features were extracted from nonenhanced, arterial and venous phase CT images. Minimum redundancy and maximum relevance and the least absolute shrinkage and selection operator were used to find the most important features with which to develop a radiomics signature in the training set. The performance of the radiomics signature was evaluated by receiver operating characteristic curves, calibration curves and decision curve analysis .Three nonzero the least absolute shrinkage and selection operator coefficient features were selected for radiomics signature construction. The radiomics signature for distinguishing the pN0 and pN1 groups achieved areas under the curve of 0.79 (95% CI 0.67, 0.91) in the training set and 0.77 (95% CI 0.55, 0.99) in the validation set. The calibration curves demonstrated good agreement between the radiomics score-predicted probability and the pathological results in the two sets (p= 0.399, p = 0.191). The decision curve analysis curves showed that the model was clinically useful.This radiomic signature could be helpful to predict CLNM status in cN0 PTC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到 ,获得积分10
刚刚
温暖半芹完成签到,获得积分20
1秒前
张志迪发布了新的文献求助10
1秒前
1秒前
小石头完成签到,获得积分10
1秒前
fxy发布了新的文献求助10
1秒前
科研小白发布了新的文献求助30
1秒前
kk发布了新的文献求助10
1秒前
1秒前
1秒前
mmol发布了新的文献求助10
2秒前
陶醉的向南完成签到,获得积分10
2秒前
XY应助好运莲莲采纳,获得14
2秒前
科研通AI6应助0717号执行官采纳,获得10
3秒前
3秒前
hjygzv完成签到 ,获得积分10
3秒前
认真凌兰发布了新的文献求助10
4秒前
Mr.Reese完成签到,获得积分10
4秒前
李文俊的太祖王振全完成签到,获得积分10
4秒前
4秒前
Carolna完成签到,获得积分10
4秒前
4秒前
Yuan完成签到,获得积分10
4秒前
打打应助kidney采纳,获得10
5秒前
5秒前
温暖半芹发布了新的文献求助30
5秒前
linglingling完成签到 ,获得积分10
5秒前
5秒前
tobino1完成签到,获得积分10
7秒前
丘比特应助古猫宁采纳,获得10
7秒前
戴戴搞科研完成签到,获得积分20
7秒前
iamcrazyboy完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
葛启峰完成签到,获得积分10
7秒前
sakura发布了新的文献求助10
8秒前
大模型应助zzioo采纳,获得10
8秒前
8秒前
CR7完成签到,获得积分10
8秒前
9秒前
CCCCCL发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525453
求助须知:如何正确求助?哪些是违规求助? 4615640
关于积分的说明 14549575
捐赠科研通 4553716
什么是DOI,文献DOI怎么找? 2495470
邀请新用户注册赠送积分活动 1476017
关于科研通互助平台的介绍 1447758