Prediction of Central Lymph Node Metastasis in cN0 Papillary Thyroid Carcinoma by CT Radiomics

医学 接收机工作特性 放射科 无线电技术 甲状腺癌 甲状腺癌 淋巴结 癌症 甲状腺 病理 内科学
作者
Yun Peng,Zhaotao Zhang,Tongtong Wang,Ya Wang,Chunhua Li,Minjing Zuo,Huashan Lin,Lianggeng Gong
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (7): 1400-1407 被引量:13
标识
DOI:10.1016/j.acra.2022.09.002
摘要

To explore the feasibility of the preoperative prediction of pathological central lymph node metastasis (CLNM) status in patients with negative clinical lymph node (cN0) papillary thyroid carcinoma (PTC) using a computed tomography (CT) radiomics signature.A total of 97 PTC cN0 nodules with CLNM pathology data (pN0, with CLNM, n = 59; pN1, without CLNM, n = 38) in 85 patients were divided into a training set (n = 69) and a validation set (n = 28). For each lesion, 321 radiomic features were extracted from nonenhanced, arterial and venous phase CT images. Minimum redundancy and maximum relevance and the least absolute shrinkage and selection operator were used to find the most important features with which to develop a radiomics signature in the training set. The performance of the radiomics signature was evaluated by receiver operating characteristic curves, calibration curves and decision curve analysis .Three nonzero the least absolute shrinkage and selection operator coefficient features were selected for radiomics signature construction. The radiomics signature for distinguishing the pN0 and pN1 groups achieved areas under the curve of 0.79 (95% CI 0.67, 0.91) in the training set and 0.77 (95% CI 0.55, 0.99) in the validation set. The calibration curves demonstrated good agreement between the radiomics score-predicted probability and the pathological results in the two sets (p= 0.399, p = 0.191). The decision curve analysis curves showed that the model was clinically useful.This radiomic signature could be helpful to predict CLNM status in cN0 PTC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大模型应助ytx采纳,获得10
刚刚
深情安青应助瘦瘦小萱采纳,获得10
刚刚
结实的荷发布了新的文献求助10
1秒前
1秒前
1秒前
zhangxian0426完成签到,获得积分10
1秒前
嘻嘻嘻完成签到 ,获得积分10
2秒前
空白发布了新的文献求助30
2秒前
2秒前
愚人完成签到,获得积分10
2秒前
2秒前
huofuman发布了新的文献求助10
2秒前
2秒前
偶然发现的西柚完成签到 ,获得积分10
3秒前
zyp发布了新的文献求助10
3秒前
辉hui发布了新的文献求助10
3秒前
Guoguocheng发布了新的文献求助10
4秒前
苹果惜梦发布了新的文献求助10
4秒前
称心翠容发布了新的文献求助10
4秒前
马小梁发布了新的文献求助10
5秒前
Tao完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
ddddansu发布了新的文献求助10
6秒前
6秒前
科研通AI5应助jing采纳,获得10
7秒前
8秒前
细心火车完成签到,获得积分10
9秒前
10秒前
NexusExplorer应助酷炫的不悔采纳,获得10
10秒前
宜醉宜游宜睡应助Sophia采纳,获得10
10秒前
ZM发布了新的文献求助10
10秒前
10秒前
叮叮车发布了新的文献求助10
11秒前
科研通AI5应助491采纳,获得10
11秒前
ytx发布了新的文献求助10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487862
求助须知:如何正确求助?哪些是违规求助? 3075753
关于积分的说明 9141978
捐赠科研通 2767984
什么是DOI,文献DOI怎么找? 1518876
邀请新用户注册赠送积分活动 703377
科研通“疑难数据库(出版商)”最低求助积分说明 701817