CRISPR-Cas systems mediated biosensing and applications in food safety detection

清脆的 食品安全 生化工程 生物技术 风险分析(工程) 粮食安全 纳米技术 计算机科学 环介导等温扩增 计算生物学 生物 业务 工程类 农业 食品科学 材料科学 遗传学 基因 生态学 DNA
作者
Jianghua Liu,Di Wu,Jiahui Chen,Shijie Jia,Jian Chen,Yongning Wu,Guoliang Li
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:64 (10): 2960-2985 被引量:25
标识
DOI:10.1080/10408398.2022.2128300
摘要

Food safety, closely related to economic development of food industry and public health, has become a global concern and gained increasing attention worldwide. Effective detection technology is of great importance to guarantee food safety. Although several classical detection methods have been developed, they have some limitations in portability, selectivity, and sensitivity. The emerging CRISPR-Cas systems, uniquely integrating target recognition specificity, signal transduction, and efficient signal amplification abilities, possess superior specificity and sensitivity, showing huge potential to address aforementioned challenges and develop next-generation techniques for food safety detection. In this review, we focus on recent progress of CRISPR-Cas mediated biosensing and their applications in food safety monitoring. The properties and principles of commonly used CRISPR-Cas systems are highlighted. Notably, the frequently coupled nucleic acid amplification strategies to enhance their selectivity and sensitivity, especially isothermal amplification methods, as well as various signal output modes are also systematically summarized. Meanwhile, the application of CRISPR-Cas systems-based biosensors in food safety detection including foodborne virus, foodborne bacteria, food fraud, genetically modified organisms (GMOs), toxins, heavy metal ions, antibiotic residues, and pesticide residues is comprehensively described. Furthermore, the current challenges and future prospects in this field are tentatively discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panjiao发布了新的文献求助30
1秒前
dearlu发布了新的文献求助10
1秒前
含蓄橘子发布了新的文献求助30
1秒前
Aaernan完成签到 ,获得积分10
1秒前
英姑应助zoeydonut采纳,获得10
1秒前
lyx发布了新的文献求助10
1秒前
LZW发布了新的文献求助10
1秒前
在水一方应助xixixixi采纳,获得10
2秒前
菜不透发布了新的文献求助10
2秒前
SciGPT应助hu采纳,获得10
6秒前
御坂妹110关注了科研通微信公众号
6秒前
平常的狗应助zhuqian采纳,获得10
7秒前
文文发布了新的文献求助10
8秒前
8秒前
yyw完成签到 ,获得积分10
9秒前
Guo完成签到,获得积分10
9秒前
ynn完成签到,获得积分10
9秒前
Hello应助起床了吗采纳,获得10
9秒前
科研通AI2S应助spotless采纳,获得10
10秒前
SYLH应助Yuying采纳,获得20
10秒前
蓝天0812发布了新的文献求助10
10秒前
万能图书馆应助123采纳,获得10
11秒前
李斌奇发布了新的文献求助10
11秒前
Camellia完成签到,获得积分10
11秒前
12秒前
12秒前
Ava应助peng采纳,获得10
13秒前
13秒前
jovrtic发布了新的文献求助30
14秒前
慕青应助UY采纳,获得10
14秒前
15秒前
zhuqian完成签到,获得积分10
15秒前
15秒前
cindy完成签到 ,获得积分10
15秒前
斯文败类应助鹿书雪采纳,获得10
17秒前
JamesPei应助超帅诗槐采纳,获得10
18秒前
18秒前
wx关注了科研通微信公众号
18秒前
18秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412