Intelligent home control system based on BP neural network speech recognition

云计算 计算机科学 家庭自动化 软件部署 语音指挥设备 过程(计算) 互联网 边缘计算 GSM演进的增强数据速率 人工神经网络 控制(管理) 多媒体 实时计算 嵌入式系统 机器学习 人工智能 万维网 电信 操作系统
作者
Ruini Liu
出处
期刊:International Journal of Emerging Electric Power Systems [De Gruyter]
卷期号:23 (6): 873-885
标识
DOI:10.1515/ijeeps-2022-0124
摘要

Abstract With the rapid progress and wide application of cutting-edge technologies such as automatic control technology and wireless communication technology in recent years, smart home, as an effective combination of these cutting-edge technologies and daily life, has received more and more attention and Research has been greatly developed. In order to solve the shortcomings of the existing home control need to download various cumbersome APP, the WeChat applet is introduced into the smart home system, and the intelligent voice technology is planned to be used in the smart home control to realize the voice control, improve the user experience and make the home Life gets smarter. This time, the deep learning technology was used in the development process of the smart home control system, and according to the historical information of the home, combined with the learning ability of the recurrent neural network for time series data, through the mining, analysis and learning of historical data, the construction based on specific The user’s unique computing model can seamlessly connect the capabilities of the voice cloud platform with the capabilities of the Internet of Things cloud platform through the Web server, making it possible to quickly access the voice recognition capabilities to smart homes. The entire system has stable connectivity, easy deployment and low cost. The main functions are deployed in the cloud and extended. After 10 rounds of iterative training of the Attention-GRU model in this paper, its prediction accuracy can quickly rise to about 97%, and finally stabilize at about 98.2%, and the lighting prediction accuracy can reach 95% or higher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
xcf6653发布了新的文献求助10
4秒前
Hello应助如沐春风采纳,获得10
4秒前
平淡的自行车完成签到,获得积分10
5秒前
李爱国应助小乔采纳,获得10
5秒前
yoyo完成签到,获得积分10
5秒前
MRM发布了新的文献求助10
7秒前
aliime发布了新的文献求助10
8秒前
Akim应助斑比采纳,获得10
9秒前
Xxxxzzz完成签到,获得积分10
10秒前
Monica完成签到,获得积分10
12秒前
Ava应助boom采纳,获得10
13秒前
13秒前
13秒前
14秒前
15秒前
大模型应助魔幻的晓夏采纳,获得10
16秒前
倔强的大萝卜完成签到,获得积分0
17秒前
后蹄儿发布了新的文献求助10
17秒前
18秒前
20秒前
20秒前
jiwen发布了新的文献求助10
21秒前
22秒前
榕树完成签到,获得积分10
24秒前
24秒前
小二郎应助schahaha采纳,获得10
25秒前
充电宝应助Kamal采纳,获得10
26秒前
冷冷发布了新的文献求助10
26秒前
boom发布了新的文献求助10
26秒前
希望天下0贩的0应助xcf6653采纳,获得10
27秒前
an12138完成签到,获得积分10
28秒前
张行完成签到,获得积分10
28秒前
蒋若风完成签到,获得积分10
29秒前
阉太狼完成签到,获得积分10
29秒前
31秒前
充电宝应助Bear采纳,获得10
32秒前
冷冷完成签到,获得积分10
33秒前
守护使者完成签到,获得积分10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672528
求助须知:如何正确求助?哪些是违规求助? 3228832
关于积分的说明 9782122
捐赠科研通 2939271
什么是DOI,文献DOI怎么找? 1610713
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736198