亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Lightweight Modified YOLOX Network Using Coordinate Attention Mechanism for PCB Surface Defect Detection

印刷电路板 块(置换群论) 计算机科学 残余物 曲面(拓扑) 嵌入式系统 人工智能 模式识别(心理学) 实时计算 算法 数学 几何学 操作系统
作者
Xuan Wang,Jianshe Gao,Hou Bo-jie,Zongshan Wang,Hongwei Ding,Jie Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (21): 20910-20920 被引量:97
标识
DOI:10.1109/jsen.2022.3208580
摘要

Surface defect detection for the printed circuit board (PCB) is essential in PCB manufacturing. Existing defect detection networks have several problems: low detection efficiency, high memory consumption, and low sensitivity to small defects. To address these issues, we propose a new lightweight deep-learning-based defect detection network, YOLOX with a modified CSPDarknet and coordinate attention (YOLOX-MC-CA). YOLOX-MC-CA is developed on the YOLOX and uses the coordinate attention (CA) mechanism to improve the recognition capability of small PCB surface defects. The backbone network in YOLOX is also modified into a new CSPdarknet structure with some inverted residual blocks. The modified CSPDarknet (MC) backbone network helps the YOLOX decrease the number of parameters on the premise of guaranteeing the feature extraction ability. We evaluated the YOLOX-MC-CA with an augmented dataset based on a public PCB surface defect dataset. Compared to the squeeze-and-excitation (SE) module, convolutional block attention module (CBAM), and other approaches in previous research, the CA mechanism improves the network with more detection precision for the small PCB surface defects. The experimental results demonstrate that our network is superior to other state-of-the-art (SOTA) networks for PCB surface defect detection, scoring 99.13% on mean average precision (mAP) and 47.6 frames per second (FPS) on detection speed, only occupying a parameter space of 3.79 million (M). It demonstrates that the proposed network is more suitable for deployment on embedded systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kuiuLinvk完成签到,获得积分10
4秒前
zsmj23完成签到 ,获得积分0
4秒前
采薇发布了新的文献求助10
6秒前
15秒前
科研通AI6.1应助小博采纳,获得10
16秒前
归尘发布了新的文献求助10
17秒前
36秒前
彭于晏应助凛玖niro采纳,获得10
42秒前
Stellarshi517发布了新的文献求助20
43秒前
45秒前
lanxinyue应助科研通管家采纳,获得10
50秒前
50秒前
lanxinyue应助科研通管家采纳,获得10
50秒前
lanxinyue应助科研通管家采纳,获得10
50秒前
lanxinyue应助科研通管家采纳,获得10
50秒前
52秒前
lzmcsp发布了新的文献求助10
58秒前
1分钟前
斯文败类应助Marshall采纳,获得10
1分钟前
凛玖niro发布了新的文献求助10
1分钟前
1分钟前
科研通AI6.1应助风听你讲采纳,获得10
1分钟前
1分钟前
小博发布了新的文献求助10
1分钟前
Marshall发布了新的文献求助10
1分钟前
nie完成签到 ,获得积分10
1分钟前
凛玖niro完成签到,获得积分10
1分钟前
Marshall完成签到,获得积分10
1分钟前
ADJ完成签到,获得积分10
1分钟前
Orange应助Judy1111采纳,获得10
1分钟前
谨慎的夏发布了新的文献求助10
1分钟前
迷路千琴完成签到,获得积分10
2分钟前
FashionBoy应助迷路千琴采纳,获得10
2分钟前
香蕉面包完成签到 ,获得积分10
2分钟前
Sandy完成签到,获得积分0
2分钟前
Sandy发布了新的文献求助10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577