催化作用
化学
废水
降级(电信)
污水处理
水处理
吸附
化学工程
草酸
臭氧
无机化学
废物管理
有机化学
计算机科学
电信
工程类
作者
Shuning Chen,Tengfei Ren,Xiaoying Zhang,Zuoyong Zhou,Xia Huang,Xiaoyuan Zhang
标识
DOI:10.1016/j.scitotenv.2022.159447
摘要
Heterogeneous catalytic ozonation (HCO) is attractive for water decontamination and catalyst is a core element. However, it is difficult to maintain high efficiency and stability of catalysts under stern conditions. In this study, we proposed Mn-loaded C-SiO2-Framework (Mn-CSF) which contained stable silica core and robust carbon shell for efficient catalytic ozonation. The pseudo-first-order kinetic rate constant for oxalic acid removal of Mn-CSF catalytic ozonation was 160 % and 875 % higher than those of Mn-SiO2 and pristine CSF, respectively. Mn-CSF was also proven effective in gasification wastewater treatment, where the COD was decreased to 46 mg·L-1, 37 % lower than that of Mn-SiO2. These results indicated that the graphitization carbon layer and Mn significantly enhanced the activity of the catalyst. Furthermore, a fulvic-like component and a protein-like component were recognized through 3D-EEM in coal gasification wastewater. It was proven that Mn-CSF catalytic ozonation exhibited higher fulvic-like component and protein-like component removal compared with ozonation. Moreover, O2- and 1O2 were identified to be responsible for organic degradation in this research. Sufficient external specific surface area and porous structure were important for complex wastewater treatment. Specifically, external specific surface area could enhance the degradation of macromolecular organics while porous structures were vital for smaller molecular pollutant removal. The results highlighted that Mn-CSF was a promising HCO catalyst for advanced wastewater treatment, and this study provided evidence of relationship between structure of catalysts and HCO efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI