Model-based process optimization for mAb chromatography

下游加工 生物制药 亲和层析 过程(计算) 工艺工程 降低成本 计算机科学 色谱法 化学 工程类 生物技术 操作系统 经济 生物 管理 生物化学
作者
Mirijam Kozorog,Simon Caserman,Matic Grom,Filipa A. Vicente,Andrej Pohar,Blaž Likozar
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:305: 122528-122528 被引量:7
标识
DOI:10.1016/j.seppur.2022.122528
摘要

Protein A affinity chromatography is an effective method for capturing and purification of monoclonal antibodies (mAbs), which are amongst the most important products in the biopharmaceutical industry. Being one of the most expensive steps of downstream purification, optimization of Protein A affinity chromatography towards higher productivity offers great potential for the reduction of production cost. Hence, this work presents the productivity optimization through four strategies of crude harvest loading in Protein A affinity chromatography. Loading strategies were optimized using a mathematical model and were compared on basis of their maximal productivities. It is theoretically shown, based on computational analysis, that the performance of existing classical batch processes can be optimized by implementing an improved loading step and fine tuning of process parameters without any additional investment in new or modified equipment, materials or energy. This approach offers an attractive alternative to existing capture steps and helps bridging a technological gap to new semi continuous processes that are still lacking sufficient reliability due to technical complexity. Increased productivity leads to lower amount of affinity resin demanded to process a given amount of crude harvest or to reduce the processing time. With a new loading strategy, less expensive affinity resins may also become an effective alternative. Amongst four different loading strategies, the loading using flow ramp was predicted by model as the most promising one and the mAb binding dynamic at changing loading velocity was tested experimentally on five different affinity resins to validate model predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王壮壮发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
科目三应助等待的慕梅采纳,获得10
3秒前
忆修发布了新的文献求助10
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得30
3秒前
xxx完成签到 ,获得积分10
4秒前
橙汁完成签到,获得积分10
5秒前
5秒前
细心的悲发布了新的文献求助10
6秒前
7秒前
7秒前
乐空思应助Ldoiaugwd采纳,获得30
9秒前
Hiky_0703发布了新的文献求助10
12秒前
华仔应助牛市棋手采纳,获得10
12秒前
12秒前
励志发SCI发布了新的文献求助20
13秒前
13秒前
大胆夏兰完成签到,获得积分10
14秒前
程昱发布了新的文献求助30
16秒前
17秒前
20秒前
走进你的梦完成签到 ,获得积分10
21秒前
牛市棋手发布了新的文献求助10
23秒前
27秒前
王壮壮完成签到,获得积分10
27秒前
27秒前
反方向的枫完成签到,获得积分10
27秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998