Charge-Boosting Strategy for Wearable Nanogenerators Enabled by Integrated Piezoelectric/Conductive Nanofibers

材料科学 纳米纤维 静电纺丝 压电 纳米技术 纳米发生器 导电体 钛酸钡 微电子 光电子学 聚合物 电介质 复合材料
作者
Jing Yan,Yuebin Qin,Mengfei Li,Yixia Zhao,Weimin Kang,Guang Yang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (49): 55039-55050 被引量:10
标识
DOI:10.1021/acsami.2c15165
摘要

The surface charge density enhancement by incorporating conductive paths into organic/inorganic piezoelectric composites is considered to be an effective way to achieve high-performance piezoelectric nanogenerators (PENGs). However, it is challenging to boost the charge density of aligned piezoelectric nanofibers due to the difficulty in efficiently building well-distributed conductive paths in their dense structure. In this work, a charge boosting strategy was proposed for enhancing the surface charge density of aligned piezoelectric nanofibers, that is, synchronously preparing piezoelectric/conductive hybrid nanofibers to realize the effective conductive paths for transferring the underlying charges to the surface of the PDMS/BaTiO3 composites. To this end, antimony-doped tin oxide (ATO) conductive nanofibers and barium titanate (BaTiO3) piezoelectric nanofibers with the same preparation conditions were selected and synchronously prepared by the polymer template electrospinning technology, followed by the calcination process. Benefiting from the well-distributed conductive paths for transferring the charges, the open-circuit voltage and short-circuit current of a PENG with 12 wt% ATO in hybrid nanofibers reached 46 V and 14.5 μA (30 kPa pressure), respectively, which were much higher than the pristine BaTiO3-based PENG. The high piezoelectric performance of the developed PENGs guaranteed their great potential applications in powering wearable microelectronics and monitoring human activity. This charge boosting strategy via the piezoelectric/conductive hybrid nanofibers may inspire the further development of high-performance energy harvesting technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱笑的含烟应助123采纳,获得10
1秒前
珊丹发布了新的文献求助10
1秒前
明明发布了新的文献求助10
1秒前
失眠无声完成签到,获得积分10
2秒前
4秒前
小王发布了新的文献求助10
7秒前
Sunflower完成签到,获得积分20
8秒前
香蕉觅云应助周政杰采纳,获得10
9秒前
星辰大海应助宗远侵采纳,获得10
9秒前
shnyo发布了新的文献求助10
10秒前
11秒前
13秒前
文艺安青发布了新的文献求助30
14秒前
栗子完成签到,获得积分10
15秒前
16秒前
huchen发布了新的文献求助10
17秒前
漂流平平发布了新的文献求助10
18秒前
18秒前
失眠的莫英完成签到,获得积分10
19秒前
宗远侵发布了新的文献求助10
20秒前
搜集达人应助carryxu采纳,获得10
20秒前
20秒前
小王发布了新的文献求助10
22秒前
科目三应助老仙翁采纳,获得10
23秒前
24秒前
中西西完成签到 ,获得积分10
25秒前
25秒前
文艺安青完成签到,获得积分20
26秒前
Li发布了新的文献求助10
26秒前
27秒前
脑洞疼应助小王采纳,获得10
27秒前
Orange应助老仙翁采纳,获得10
28秒前
喵喵发布了新的文献求助20
29秒前
flypipidan发布了新的文献求助10
29秒前
yiyiji完成签到,获得积分20
29秒前
Yziii应助忧虑的土豆采纳,获得10
30秒前
30秒前
32秒前
JamesPei应助小飞采纳,获得10
32秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128936
求助须知:如何正确求助?哪些是违规求助? 2779683
关于积分的说明 7744521
捐赠科研通 2434916
什么是DOI,文献DOI怎么找? 1293769
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530