Predicting Neoadjuvant Treatment Response in Rectal Cancer Using Machine Learning: Evaluation of MRI-Based Radiomic and Clinical Models

医学 淋巴血管侵犯 旁侵犯 癌胚抗原 结直肠癌 阶段(地层学) 磁共振成像 新辅助治疗 接收机工作特性 T级 单变量分析 内科学 放射科 肿瘤科 癌症 多元分析 转移 古生物学 乳腺癌 生物
作者
Kent J. Peterson,Matthew Simpson,Melissa K. Drezdzon,Anikó Szabó,Robin A. Ausman,Andrew S. Nencka,Paul Knechtges,Carrie Y. Peterson,Kirk Ludwig,Timothy J. Ridolfi
出处
期刊:Journal of Gastrointestinal Surgery [Springer Science+Business Media]
卷期号:27 (1): 122-130 被引量:2
标识
DOI:10.1007/s11605-022-05477-9
摘要

BackgroundRadiomics is an approach to medical imaging that quantifies the features normally translated into visual display. While both radiomic and clinical markers have shown promise in predicting response to neoadjuvant chemoradiation therapy (nCRT) for rectal cancer, the interrelationship is not yet clear.MethodsA retrospective, single-institution study of patients treated with nCRT for locally advanced rectal cancer was performed. Clinical and radiomic features were extracted from electronic medical record and pre-treatment magnetic resonance imaging, respectively. Machine learning models were created and assessed for complete response and positive treatment effect using the area under the receiver operating curves.ResultsOf 131 rectal cancer patients evaluated, 68 (51.9%) were identified to have a positive treatment effect and 35 (26.7%) had a complete response. On univariate analysis, clinical T-stage (OR 0.46, p = 0.02), lymphovascular/perineural invasion (OR 0.11, p = 0.03), and statin use (OR 2.45, p = 0.049) were associated with a complete response. Clinical T-stage (OR 0.37, p = 0.01), lymphovascular/perineural invasion (OR 0.16, p = 0.001), and abnormal carcinoembryonic antigen level (OR 0.28, p = 0.002) were significantly associated with a positive treatment effect. The clinical model was the strongest individual predictor of both positive treatment effect (AUC = 0.64) and complete response (AUC = 0.69). The predictive ability of a positive treatment effect increased by adding tumor and mesorectal radiomic features to the clinical model (AUC = 0.73).ConclusionsThe use of a combined model with both clinical and radiomic features resulted in the strongest predictive capability. With the eventual goal of tailoring treatment to the individual, both clinical and radiologic markers offer insight into identifying patients likely to respond favorably to nCRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助重要的如天采纳,获得10
刚刚
酷波er应助忧虑的绮梅采纳,获得10
1秒前
2秒前
wjx关闭了wjx文献求助
3秒前
Lliu完成签到,获得积分10
3秒前
YOLO发布了新的文献求助30
3秒前
Enckson完成签到,获得积分10
4秒前
热情迎彤发布了新的文献求助10
6秒前
6秒前
6秒前
王小嘻完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
ShiSakura完成签到,获得积分10
8秒前
wjx关闭了wjx文献求助
9秒前
222发布了新的文献求助10
11秒前
12秒前
高大的依秋关注了科研通微信公众号
13秒前
英俊的铭应助zhendezy采纳,获得10
13秒前
从容的戎发布了新的文献求助10
13秒前
14秒前
wjx关闭了wjx文献求助
14秒前
顾矜应助不吃西瓜采纳,获得10
17秒前
桐桐应助ty采纳,获得10
17秒前
zlx发布了新的文献求助10
18秒前
禾晏发布了新的文献求助10
18秒前
19秒前
19秒前
li完成签到,获得积分10
19秒前
XHK发布了新的文献求助10
19秒前
19秒前
穆伟祺应助Sunwenrui采纳,获得20
20秒前
天天快乐应助复杂采纳,获得10
20秒前
wjx关闭了wjx文献求助
20秒前
程雯慧发布了新的文献求助10
22秒前
黎羽完成签到,获得积分10
22秒前
有终完成签到 ,获得积分10
23秒前
23秒前
25秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519718
关于积分的说明 11199471
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798075
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305