Predicting Neoadjuvant Treatment Response in Rectal Cancer Using Machine Learning: Evaluation of MRI-Based Radiomic and Clinical Models

医学 淋巴血管侵犯 旁侵犯 癌胚抗原 结直肠癌 阶段(地层学) 磁共振成像 新辅助治疗 接收机工作特性 T级 单变量分析 内科学 放射科 肿瘤科 癌症 多元分析 转移 古生物学 乳腺癌 生物
作者
Kent J. Peterson,Matthew Simpson,Melissa K. Drezdzon,Anikó Szabó,Robin A. Ausman,Andrew S. Nencka,Paul Knechtges,Carrie Y. Peterson,Kirk Ludwig,Timothy J. Ridolfi
出处
期刊:Journal of Gastrointestinal Surgery [Springer Nature]
卷期号:27 (1): 122-130 被引量:2
标识
DOI:10.1007/s11605-022-05477-9
摘要

BackgroundRadiomics is an approach to medical imaging that quantifies the features normally translated into visual display. While both radiomic and clinical markers have shown promise in predicting response to neoadjuvant chemoradiation therapy (nCRT) for rectal cancer, the interrelationship is not yet clear.MethodsA retrospective, single-institution study of patients treated with nCRT for locally advanced rectal cancer was performed. Clinical and radiomic features were extracted from electronic medical record and pre-treatment magnetic resonance imaging, respectively. Machine learning models were created and assessed for complete response and positive treatment effect using the area under the receiver operating curves.ResultsOf 131 rectal cancer patients evaluated, 68 (51.9%) were identified to have a positive treatment effect and 35 (26.7%) had a complete response. On univariate analysis, clinical T-stage (OR 0.46, p = 0.02), lymphovascular/perineural invasion (OR 0.11, p = 0.03), and statin use (OR 2.45, p = 0.049) were associated with a complete response. Clinical T-stage (OR 0.37, p = 0.01), lymphovascular/perineural invasion (OR 0.16, p = 0.001), and abnormal carcinoembryonic antigen level (OR 0.28, p = 0.002) were significantly associated with a positive treatment effect. The clinical model was the strongest individual predictor of both positive treatment effect (AUC = 0.64) and complete response (AUC = 0.69). The predictive ability of a positive treatment effect increased by adding tumor and mesorectal radiomic features to the clinical model (AUC = 0.73).ConclusionsThe use of a combined model with both clinical and radiomic features resulted in the strongest predictive capability. With the eventual goal of tailoring treatment to the individual, both clinical and radiologic markers offer insight into identifying patients likely to respond favorably to nCRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
匿名美女用户完成签到,获得积分10
刚刚
程程程完成签到,获得积分10
刚刚
倪小呆发布了新的文献求助10
刚刚
852应助Azhaozihao采纳,获得10
刚刚
慕青应助ily.采纳,获得10
刚刚
顾矜应助匿名美女用户采纳,获得10
3秒前
3秒前
研友_LjbjzL完成签到,获得积分10
3秒前
5秒前
ZZDXXX发布了新的文献求助10
5秒前
南瓜头完成签到 ,获得积分10
6秒前
6秒前
我是老大应助黑米粥采纳,获得10
6秒前
6秒前
月亮奔我而来完成签到,获得积分20
7秒前
xyxsmile完成签到,获得积分10
8秒前
nanonamo完成签到,获得积分10
8秒前
之仔饼发布了新的文献求助10
9秒前
长命百岁完成签到 ,获得积分10
10秒前
王线性完成签到,获得积分10
10秒前
山山完成签到,获得积分10
10秒前
10秒前
HTT完成签到,获得积分10
11秒前
liu1223456发布了新的文献求助10
11秒前
阿烨完成签到,获得积分10
11秒前
huohua完成签到,获得积分10
11秒前
托物言宇发布了新的文献求助10
11秒前
123完成签到,获得积分10
11秒前
王黎完成签到,获得积分10
12秒前
最佳损友完成签到,获得积分10
13秒前
动听的笑南完成签到,获得积分10
13秒前
13秒前
wisteety完成签到,获得积分10
14秒前
赫连立果完成签到,获得积分10
14秒前
mm完成签到,获得积分20
15秒前
1937发布了新的文献求助10
15秒前
17秒前
tongxiehou1完成签到,获得积分10
17秒前
supertkeb应助清新的夏烟采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311526
求助须知:如何正确求助?哪些是违规求助? 2944297
关于积分的说明 8518278
捐赠科研通 2619707
什么是DOI,文献DOI怎么找? 1432509
科研通“疑难数据库(出版商)”最低求助积分说明 664684
邀请新用户注册赠送积分活动 649903