Predicting Neoadjuvant Treatment Response in Rectal Cancer Using Machine Learning: Evaluation of MRI-Based Radiomic and Clinical Models

医学 淋巴血管侵犯 旁侵犯 癌胚抗原 结直肠癌 阶段(地层学) 磁共振成像 新辅助治疗 接收机工作特性 T级 单变量分析 内科学 放射科 肿瘤科 癌症 多元分析 转移 古生物学 乳腺癌 生物
作者
Kent J. Peterson,Matthew Simpson,Melissa K. Drezdzon,Anikó Szabó,Robin A. Ausman,Andrew S. Nencka,Paul Knechtges,Carrie Y. Peterson,Kirk Ludwig,Timothy J. Ridolfi
出处
期刊:Journal of Gastrointestinal Surgery [Springer Science+Business Media]
卷期号:27 (1): 122-130 被引量:2
标识
DOI:10.1007/s11605-022-05477-9
摘要

BackgroundRadiomics is an approach to medical imaging that quantifies the features normally translated into visual display. While both radiomic and clinical markers have shown promise in predicting response to neoadjuvant chemoradiation therapy (nCRT) for rectal cancer, the interrelationship is not yet clear.MethodsA retrospective, single-institution study of patients treated with nCRT for locally advanced rectal cancer was performed. Clinical and radiomic features were extracted from electronic medical record and pre-treatment magnetic resonance imaging, respectively. Machine learning models were created and assessed for complete response and positive treatment effect using the area under the receiver operating curves.ResultsOf 131 rectal cancer patients evaluated, 68 (51.9%) were identified to have a positive treatment effect and 35 (26.7%) had a complete response. On univariate analysis, clinical T-stage (OR 0.46, p = 0.02), lymphovascular/perineural invasion (OR 0.11, p = 0.03), and statin use (OR 2.45, p = 0.049) were associated with a complete response. Clinical T-stage (OR 0.37, p = 0.01), lymphovascular/perineural invasion (OR 0.16, p = 0.001), and abnormal carcinoembryonic antigen level (OR 0.28, p = 0.002) were significantly associated with a positive treatment effect. The clinical model was the strongest individual predictor of both positive treatment effect (AUC = 0.64) and complete response (AUC = 0.69). The predictive ability of a positive treatment effect increased by adding tumor and mesorectal radiomic features to the clinical model (AUC = 0.73).ConclusionsThe use of a combined model with both clinical and radiomic features resulted in the strongest predictive capability. With the eventual goal of tailoring treatment to the individual, both clinical and radiologic markers offer insight into identifying patients likely to respond favorably to nCRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
釉质牙医完成签到,获得积分10
刚刚
1秒前
YooM发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
yn发布了新的文献求助10
6秒前
ly发布了新的文献求助10
6秒前
乂氼发布了新的文献求助10
7秒前
SYLH应助高兴的半仙采纳,获得10
8秒前
酷波er应助Dream123采纳,获得10
8秒前
不吃胡萝卜完成签到 ,获得积分10
9秒前
vvv发布了新的文献求助10
9秒前
jessicaw完成签到,获得积分0
11秒前
无花果应助Charlieite采纳,获得10
12秒前
solum完成签到 ,获得积分10
12秒前
YooM发布了新的文献求助10
13秒前
taotao完成签到,获得积分10
14秒前
15秒前
ayuelei发布了新的文献求助10
16秒前
科研通AI2S应助xxxp采纳,获得10
16秒前
17秒前
FashionBoy应助qqa采纳,获得10
17秒前
小马甲应助橙子皮采纳,获得10
17秒前
17秒前
Charlieite完成签到,获得积分20
21秒前
秋秋完成签到,获得积分10
21秒前
可靠的南露应助Leon采纳,获得30
21秒前
Rondab应助Leon采纳,获得10
21秒前
王淳完成签到 ,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
今后应助vvv采纳,获得10
22秒前
sdniuidifod发布了新的文献求助10
23秒前
卡卡西应助宾果消消气采纳,获得30
23秒前
朱晖发布了新的文献求助50
23秒前
24秒前
24秒前
YooM发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969628
求助须知:如何正确求助?哪些是违规求助? 3514448
关于积分的说明 11174217
捐赠科研通 3249822
什么是DOI,文献DOI怎么找? 1795000
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804856