倍周期分岔
跨临界分岔
同宿分支
分岔图
博格达诺夫-塔肯分岔
分叉理论的生物学应用
干草叉分叉
数学
鞍结分岔
分叉
分岔理论
数学分析
混乱的
控制理论(社会学)
应用数学
计算机科学
物理
非线性系统
量子力学
人工智能
控制(管理)
标识
DOI:10.1016/j.chaos.2022.112910
摘要
In this paper, the dynamic behavior of a space- and time-discrete predator–prey system with Smith growth function is studied. Through the stability analysis, the parametric conditions are gained to ensure the stability of the homogeneous steady state of the system. Through the bifurcation theory, the expressions of the critical values for the occurrence of Neimark–Sacker bifurcation and flip bifurcation of the system are obtained, and the conditions for the occurrence of Turing bifurcation of the system are given. Finally, through numerical simulation, we can observe some complex dynamic behaviors, such as period-doubling cascade, invariant circles, periodic windows, chaotic dynamics and pattern formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI