多硫化物
材料科学
石墨烯
分离器(采油)
锂硫电池
硒化物
成核
硫黄
电化学
纳米技术
异质结
化学气相沉积
化学工程
光电子学
冶金
有机化学
物理化学
电解质
电极
热力学
化学
工程类
物理
硒
作者
Menglei Wang,Yujie Zhu,Yingjie Sun,Yu Zhao,Xianzhong Yang,Xiaojing Wang,Yingze Song,Haina Ci,Jingyu Sun
标识
DOI:10.1002/adfm.202211978
摘要
Abstract The practical application of lithium–sulfur (Li–S) batteries has been handicapped by the notorious polysulfide shuttling and sluggish sulfur conversion kinetics. Although the functional modification of separator is readily proposed as an effective strategy to optimize the Li–S redox reactions, the excessive material dosage and invalid structural design still result in inferior electrocatalyst utilization. Herein, generic graphene‐metal selenide heterostructures (Gr‐M x Se y , M = Mo, W, Mn, Cu and Zn) are controllably grown on commercial glass fiber (GF) separator employing a sequential low‐temperature chemical vapor deposition procedure. Such a tailored reservoir can not only render ample active sites but also realize the synergy of polar and catalytic framework, which maximizes the electrochemical functions in alleviating shuttle effect and guiding Li 2 S nucleation/decomposition. The thus‐derived Gr‐M x Se y /GF separator affording favorable heatproof feature endows the Li–S battery with an outstanding cycling stability (100% capacity retention over 100 cycles at 0.2 C). Furthermore, the flexible Li–S pouch cell based on this new separator delivers good device performance (with a capacity decay of 0.25% per cycle over 100 cycles). This study offers comprehensive insight into the reliable separator design toward working Li–S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI